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AVX Instruction Set
Until recently, popular CPU architectures, like x86, were able to operate on up to 4 
single-precision floating-point numbers at the same time. This has changed with the 
introduction of the 256-bit AVX (Advanced Vector Extensions) instruction set, which has 
double the SIMD width of SSE, AltiVec, NEON, etc.

We have optimized two BVH packet traversal algorithms for AVX: ranged traversal  and 
partition traversal. The smallest ray primitive of both these algorithms is the SIMD ray, 
which consists of multiple rays that are traced together throughout the entire algo-
rithm. This enables efficient parallel intersection of rays with nodes and triangles. In 4-
wide SIMD implementations, a SIMD ray usually contains 2×2 rays, thus, nearby rays are 
packed together to maximize coherence. For AVX, we employ 4×2 SIMD rays.

Ranged traversal is very sensitive to the order of the rays. Partition traversal is more 
robust in this area. In order to maximize speed, SIMD rays are stored in Morton-order.

Ray Packet Traversal
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Ray packets can be quite large, commonly having a size of 256 or even 1024 rays, there-
fore, it is important to store the ray data in a cache-friendly way. This can be achieved 
by using an array of structures of arrays  (AoSoA) layout, which, by grouping together 
the data belonging to a SIMD ray, combines the SIMD-friendliness of SoA (structure of 
arrays) with the locality of AoS (array of structures).

Example (3D vector, 4-wide SIMD):

AoSoA Ray Layout
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Ranged Traversal Performance for Primary Rays

The performance of ray packet tracing can be improved by applying frustum culling in 
addition to SIMD ray methods. Our implementation uses interval arithmetic  (IA) for 
culling nodes, and corner rays  for culling triangles. Neither of these techniques take 
advantage of AVX. Our box test is entirely scalar, and the triangle test does not map well 
to wide SIMD execution because there are only 4 corner rays.

Frustum Culling
Ray packet algorithms enable the efficient tracing of coherent rays, which is especially 
important for real-time ray tracing solutions. One major source of performance im-
provement is the use of SIMD operations provided by the CPU. For example, the SSE 
instruction set enables the intersection of 4 rays with an acceleration structure node or 
a primitive approximately at the cost of 1. However, advanced packet-based approaches 
also have remarkable algorithmic benefits which are independent of SIMD.

In this poster, we present our approach to optimizing coherent BVH ray packet tracing 
for the new AVX instruction set, which has, amongst others, 8-wide SIMD operations on 
32-bit floating-point numbers. We have measured an average speedup of about 50% 
compared to our SSE4.1 implementation, on an Intel Sandy Bridge processor.

Introduction

The algorithms were implemented in C++ using AVX and SSE4.1 intrinsic functions. The 
code was compiled for 64 bits with Visual C++ 2010. All tests were run on a system with 
an Intel Core i5-2400 processor (4 cores, 4 threads, 3.1 GHz) and Windows 7 SP1 64-bit. 
The rendering resolution was set to 1024×768 pixels.

For all models except the highly tessellated Welsh Dragon, ranged traversal with frus-
tum culling is the fastest approach. AVX provides a speedup, compared to SSE, of at 
least roughly 50% in most cases. This sublinear increase is due to larger SIMD rays with 
lower utilization and non-SIMD parts of the algorithm.

We will continue our research with a primary focus on incoherent rays.

Results
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Conference 5.6 63.3 93.2 47.1 44.6 76.1 70.7 35.3 52.3 48.2 29.8 48.3 62.3

Sibenik 5.4 69.1 102.1 47.8 47.4 82.6 74.3 33.0 50.8 53.8 28.8 47.6 64.9

Crytek Sponza 2.7 27.5 40.2 46.3 20.2 34.3 70.1 16.1 23.2 44.2 14.0 22.4 60.3

Welsh Dragon 6.7 9.2 13.6 48.4 10.0 15.3 53.3 13.8 15.5 12.4 19.0 22.9 20.7

Measurements were executed for single ray traversal, ranged, and partition traversal, with and without frustum culling. The timings do not include 
ray generation and shading. The best value for each model is highlighted, and the speedups caused by AVX over SSE4.1 are also listed. The CPU 
used was an Intel Core i5-2400, and the resolution was 1024×768.

Table of Traversal Performance for Primary Rays
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