
Improving BVH Ray Tracing Speed Using the AVX Instruction Set
Attila T. Áfra

Budapest University of Technology and Economics, Hungary
Babeș-Bolyai University, Cluj-Napoca, Romania

Contact: attila.afra@gmail.com

3 2 1 0

01234567

SSE register

AVX register

AVX Instruction Set
Until recently, popular CPU architectures, like x86, were able to operate on up to 4
single-precision floating-point numbers at the same time. This has changed with the
introduction of the 256-bit AVX (Advanced Vector Extensions) instruction set, which has
double the SIMD width of SSE, AltiVec, NEON, etc.

We have optimized two BVH packet traversal algorithms for AVX: ranged traversal and
partition traversal. The smallest ray primitive of both these algorithms is the SIMD ray,
which consists of multiple rays that are traced together throughout the entire algo-
rithm. This enables efficient parallel intersection of rays with nodes and triangles. In 4-
wide SIMD implementations, a SIMD ray usually contains 2×2 rays, thus, nearby rays are
packed together to maximize coherence. For AVX, we employ 4×2 SIMD rays.

Ranged traversal is very sensitive to the order of the rays. Partition traversal is more
robust in this area. In order to maximize speed, SIMD rays are stored in Morton-order.

Ray Packet Traversal

0 1 2 3
4 5 6 7

AVX 4×2 SIMD ray pixel layout

X0 X1 X2 X3 Y0 Y1 Y2 Y3 Z0 Z1 Z2 Z3 X4 X5 X6 X7
Structure 0 Structure 1

∙∙∙

Ray packets can be quite large, commonly having a size of 256 or even 1024 rays, there-
fore, it is important to store the ray data in a cache-friendly way. This can be achieved
by using an array of structures of arrays (AoSoA) layout, which, by grouping together
the data belonging to a SIMD ray, combines the SIMD-friendliness of SoA (structure of
arrays) with the locality of AoS (array of structures).

Example (3D vector, 4-wide SIMD):

AoSoA Ray Layout

Conference Sibenik Crytek Sponza Welsh Dragon
0

20

40

60

80

100

120

Single
Ranged SSE
Ranged AVXM

ra
y/

s

Ranged Traversal Performance for Primary Rays

The performance of ray packet tracing can be improved by applying frustum culling in
addition to SIMD ray methods. Our implementation uses interval arithmetic (IA) for
culling nodes, and corner rays for culling triangles. Neither of these techniques take
advantage of AVX. Our box test is entirely scalar, and the triangle test does not map well
to wide SIMD execution because there are only 4 corner rays.

Frustum Culling
Ray packet algorithms enable the efficient tracing of coherent rays, which is especially
important for real-time ray tracing solutions. One major source of performance im-
provement is the use of SIMD operations provided by the CPU. For example, the SSE
instruction set enables the intersection of 4 rays with an acceleration structure node or
a primitive approximately at the cost of 1. However, advanced packet-based approaches
also have remarkable algorithmic benefits which are independent of SIMD.

In this poster, we present our approach to optimizing coherent BVH ray packet tracing
for the new AVX instruction set, which has, amongst others, 8-wide SIMD operations on
32-bit floating-point numbers. We have measured an average speedup of about 50%
compared to our SSE4.1 implementation, on an Intel Sandy Bridge processor.

Introduction

The algorithms were implemented in C++ using AVX and SSE4.1 intrinsic functions. The
code was compiled for 64 bits with Visual C++ 2010. All tests were run on a system with
an Intel Core i5-2400 processor (4 cores, 4 threads, 3.1 GHz) and Windows 7 SP1 64-bit.
The rendering resolution was set to 1024×768 pixels.

For all models except the highly tessellated Welsh Dragon, ranged traversal with frus-
tum culling is the fastest approach. AVX provides a speedup, compared to SSE, of at
least roughly 50% in most cases. This sublinear increase is due to larger SIMD rays with
lower utilization and non-SIMD parts of the algorithm.

We will continue our research with a primary focus on incoherent rays.

Results

Model Single Ranged Ranged w/o culling Partition Partition w/o culling

Mray/s
SSE

Mray/s
AVX

Mray/s
+
%

SSE
Mray/s

AVX
Mray/s

+
%

SSE
Mray/s

AVX
Mray/s

+
%

SSE
Mray/s

AVX
Mray/s

+
%

Conference 5.6 63.3 93.2 47.1 44.6 76.1 70.7 35.3 52.3 48.2 29.8 48.3 62.3

Sibenik 5.4 69.1 102.1 47.8 47.4 82.6 74.3 33.0 50.8 53.8 28.8 47.6 64.9

Crytek Sponza 2.7 27.5 40.2 46.3 20.2 34.3 70.1 16.1 23.2 44.2 14.0 22.4 60.3

Welsh Dragon 6.7 9.2 13.6 48.4 10.0 15.3 53.3 13.8 15.5 12.4 19.0 22.9 20.7

Measurements were executed for single ray traversal, ranged, and partition traversal, with and without frustum culling. The timings do not include
ray generation and shading. The best value for each model is highlighted, and the speedups caused by AVX over SSE4.1 are also listed. The CPU
used was an Intel Core i5-2400, and the resolution was 1024×768.

Table of Traversal Performance for Primary Rays

Conference (283K tris)

Crytek Sponza (279K tris)

Sibenik (80K tris)

Welsh Dragon (2.2M tris)

Benchmark Models
This work has been supported by the TeraTomo project of
the National Office for Research and Technology, OTKA K-
719922, and by TÁMOP-4.2.1/B-09/1/KMR-2010-0002. The
Welsh Dragon model was released by Bangor University, UK,
for Eurographics 2011.

Acknowledgements

● BOULOS S., WALD I., SHIRLEY P.: Geometric and Arithmetic
Culling Methods for Entire Ray Packets. Tech. Rep. UUCS-06-
010, School of Computing, University of Utah, 2006.

● OVERBECK R., RAMAMOORTHI R., MARK W. R.: Large ray
packets for real-time whitted ray tracing. In IEEE/EG Sym-
posium on Interactive Ray Tracing 2008 (2008).

● WALD I., BOULOS S., SHIRLEY P.: Ray Tracing Deformable
Scenes using Dynamic Bounding Volume Hierarchies. ACM
Transactions on Graphics 26, 1 (2007).

References

	Slide 1

