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Abstract

High performance ray tracing on the CPU requires the efficient utilization of SIMD instructions. Ray packet and
ray stream traversal algorithms achieve this by performing computations on multiple rays, nodes, or primitives at
the same time. In this paper, we present our approach to optimizing coherent BVH ray packet tracing for the new
AVX instruction set, which enables 8-wide SIMD operations on 32-bit floating-point numbers. We have measured
an average speedup of about 50% compared to our SSE4.1 implementation, on an Intel Sandy Bridge processor.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Ray packet algorithms enable the fast tracing of coherent
rays, which is especially important for real-time ray tracing
solutions. One major source of performance improvement is
the use of SIMD operations provided by the CPU. For exam-
ple, the SSE instruction set enables the intersection of 4 rays
with an acceleration structure node or a primitive approxi-
mately at the cost of 1. However, advanced packet-based ap-
proaches also have remarkable algorithmic benefits, which
are independent of SIMD.

While optimizing ray tracing for multiple cores or pro-
cessors is trivial and the resulting speedup is almost linear,
exploiting instruction level parallelism can be quite chal-
lenging and the performance does not scale linearly with the
SIMD width. If the rays are not coherent enough, the bene-
fits of SIMD are limited because the SIMD unit utilization is
low. Nevertheless, the performance gains can be significant
in many cases, particularly for primary rays.

Until recently, popular CPU architectures, like x86, were
able to operate on up to 4 single-precision floating-point
numbers simultaneously. This has changed with the intro-
duction of the 256-bit AVX (Advanced Vector Extensions)
instruction set, which has double the SIMD width of SSE,
AltiVec, NEON, etc.

We have optimized two BVH packet traversal algorithms

for AVX: ranged traversal [WBS07] and partition traversal
[ORM08]. The speed measurements were performed on an
actual Intel Sandy Bridge CPU, which is the first processor
implementing AVX.

2. AVX Ray Packet Tracing

The smallest ray primitive of both the ranged and partition
traversal algorithms is the SIMD ray, which consists of mul-
tiple rays that are traced together throughout the entire al-
gorithm. This enables efficient parallel intersection of rays
with nodes (using the Kay-Kajiya slab test) and triangles. In
4-wide SIMD implementations, a SIMD ray usually contains
2×2 rays, thus, nearby rays are packed together to maximize
coherence. For AVX, we employ 4×2 SIMD rays.

Ray packets can be quite large, commonly having a size
of 256 or even 1024 rays, therefore, it is important to store
the ray data in a cache-friendly way. This can be achieved
by using an array of structures of arrays (AoSoA) layout,
which, by grouping together the data belonging to a SIMD
ray, combines the SIMD-friendliness of SoA (structure of
arrays) with the locality of AoS (array of structures).

Ranged traversal is a relatively naive algorithm, which is
very sensitive to the order of the rays in the packet. Partition
traversal is significantly more robust in this area. In order to
maximize speed, SIMD rays are stored in Morton-order.
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Model Single Ranged Ranged w/o culling Partition Partition w/o culling
SSE AVX + SSE AVX + SSE AVX + SSE AVX +

Mray/s Mray/s Mray/s % Mray/s Mray/s % Mray/s Mray/s % Mray/s Mray/s %

Conference 5.6 63.3 93.2 47.1 44.6 76.1 70.7 35.3 52.3 48.2 29.8 48.3 62.3
Sibenik 5.4 69.1 102.1 47.8 47.4 82.6 74.3 33.0 50.8 53.8 28.8 47.6 64.9

Crytek Sponza 2.7 27.5 40.2 46.3 20.2 34.3 70.1 16.1 23.2 44.2 14.0 22.4 60.3
Welsh Dragon 6.7 9.2 13.6 48.4 10.0 15.3 53.3 13.8 15.5 12.4 19.0 22.9 20.7

Table 1: Performance in million rays per second for primary rays. The models were rendered from the viewpoints depicted in
Figure 1. The timings do not include ray generation and shading. The highest value for each model is shown in bold, and the
speedups caused by AVX over SSE4.1 are also listed. Measurements were executed for single ray traversal, ranged, and partition
traversal, with and without frustum culling. The CPU used was an Intel Core i5-2400, and the resolution was 1024×768.

The performance of ray packet tracing can be improved
by applying frustum culling in addition to SIMD ray tech-
niques. Our prototype implementation uses interval arith-
metic (IA) for culling nodes, and corner rays for culling tri-
angles, as described in [BWS06]. Unfortunately, neither of
these take advantage of AVX. The box test is entirely scalar,
and the triangle test does not map well to wide SIMD execu-
tion because there are only 4 corner rays.

All in all, the operations that can fully exploit the power
of the AVX instruction set are: ray-box intersection, ray-
triangle intersection, and shading.

3. Results

The ray tracing algorithms were implemented in C++ using
AVX and SSE4.1 intrinsic functions. The code was compiled
for 64 bits with Visual C++ 2010. All tests were run on a sys-
tem with an Intel Core i5-2400 processor (4 cores, 4 threads,
3.1 GHz) and Windows 7 SP1 64-bit. The rendering resolu-
tion was set to 1024×768 pixels.

Table 1 shows the performance results for primary rays.
It can be seen that for all models except the highly tessel-
lated Welsh Dragon, range traversal with frustum culling is
the fastest approach. AVX provides a speedup, compared to
SSE, of at least roughly 50% in most cases. This sublinear
increase is due to larger SIMD rays with lower utilization
and non-SIMD parts of the algorithm.

The Welsh Dragon model contains many small triangles,
thus, rays are less coherent. This results in a decreased
speedup of about 20%. Partition traversal is better suited for
such scenes because it avoids many unnecessary intersec-
tions by accurately filtering out dead rays. It is also worth
noting that frustum culling has a negative impact on the ren-
dering speed for this model.

4. Conclusion and Future Work

We have presented our ideas for accelerating coherent BVH
ray tracing using AVX instructions, and have also provided
preliminary real-world performance statistics. We will con-
tinue our research with a primary focus on incoherent rays.

(a) Conference (283K tris) (b) Sibenik (80K tris)

(c) Crytek Sponza (279K tris) (d) Welsh Dragon (2.2M tris)

Figure 1: Models used for the performance measurements.
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