EUROGRAPHICS 2012 / C. Andujar, E. Puppo

Short Paper

Incoherent Ray Tracing without Acceleration Structures

Attila T. Afra'?

Budapest University of Technology and Economics, Hungary
2Babes-Bolyai University, Cluj-Napoca, Romania

Abstract

Recently, a new family of dynamic ray tracing algorithms, called divide-and-conquer ray tracing, has been intro-
duced. This approach partitions the primitives on-the-fly during ray traversal, which eliminates the need for an
acceleration structure. We present a new ray traversal method based on this principle, which efficiently handles
incoherent rays, and takes advantage of the SSE and AVX instruction sets of the CPU. Our algorithm offers notable
performance improvements over similar existing solutions, and it is competitive with powerful static ray tracers.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

A ray tracer typically consists of two main parts: ray traver-
sal and acceleration structure building. Rendering fully dy-
namic scenes with ray tracing is a particularly challenging
problem since the acceleration structure must be either up-
dated or rebuilt for every frame. There has been extensive
research on this topic [WMG*09].

Keller and Wichter [KW11] recently proposed a largely
different and elegant approach: divide-and-conquer (DAC)
ray tracing. Its basic idea is to incorporate the primitive
partitioning into the ray traversal algorithm. Thus, no ac-
celeration structure is required. Unfortunately, the authors
did not provide many algorithmic details or performance
results. The only published full implementation to date is
by Mora [Morl1]. It partitions the primitives in a kd-tree-
like manner, but does not use the high-quality surface area
heuristic (SAH) [Hav00].

In this paper, we propose a new DAC traversal algorithm
based on the core method by Keller et al. Our approach is
generally more efficient than Mora’s method, and it exploits
the power of the new AVX (Advanced Vector Extensions)
instruction set introduced with the Intel Sandy Bridge mi-
croarchitecture. We have optimized our method for incoher-
ent rays because most rays shot by a Monte Carlo renderer
(e.g., path tracer, photon mapper) have little or no coherence.
This not only improves the performance of physically based
rendering, but also simplifies the overall design.

(© The Eurographics Association 2012.

2. Divide-and-Conquer Ray Traversal

This ray traversal algorithm is practical only if a large num-
ber (ideally millions) of rays are traced together, in breadth-
first fashion. However, a notable advantage of DAC traver-
sal is that the number of partitioning steps can be signifi-
cantly lower than for the building of an acceleration struc-
ture. While it is necessary to build the entire tree regardless
of the actual ray distribution, DAC traversal performs parti-
tioning only for regions that are visited by rays.

The inputs of the algorithm are the set of rays and the set
of primitives to intersect. At the beginning of each traversal
step, we determine which rays intersect the bounding box
of the primitives. This operation is called ray filtering, and
the rays that intersect the box are active rays. Next, we de-
cide whether to further partition the primitives or to directly
compute their intersections with the active rays. If we have
subdivided the primitives, we recursively call the traversal
function for the resulting subsets.

3. Our Algorithm

A key part of the traversal algorithm is primitive partitioning.
Kd-trees are constructed using spatial partitioning, while
BVHs mostly use object partitioning. An important feature
of object partitioning is that it divides a list of primitives into
disjoint sublists, contrary to spatial partitioning. BVHs are
more suitable for dynamic scenes than kd-trees because they
can be built up to an order of magnitude faster, and consume

Attila T. Afra / Incoherent Ray Tracing without Acceleration Structures

less memory since they are shallower [Wal07]. Therefore,
we opted for object partitioning in our traversal algorithm.

We use triangles as primitives in our implementation, but
the method can be easily adapted to other types of primitives.

3.1. Ray filtering

The purpose of ray filtering is to determine the list of ac-
tive rays, which intersect a given axis-aligned bounding box
(AABB). This list initially contains all rays, and it is recur-
sively filtered in each traversal step. The filtering can be ex-
ecuted in-place by rearranging the list to create an active and
an inactive partition. This way, the active rays start at the
beginning of the list, and an offset to the end of the list is
enough to identify them.

We keep the rays in a single continuous array. Since our
method has to trace millions of rays at the same time, the
rays occupy a considerable amount of memory. This affects
not only the space requirements, but also the speed.

A ray is specified using a point of origin, a direction vec-
tor, an interval [0,fmax]| defining a line segment, and an ID.
The total size of a ray is 32 bytes, which means that it fits
into a single AVX register or two SSE registers. Most ray
tracing algorithms precompute the inverse ray direction, but
for our method, this is not practical, and the increased ray
size degrades performance.

Mora [Morl1] filters rays by reordering an auxiliary ID
array to avoid moving the much larger ray structures. Al-
though this approach is preferable for coherent rays and
small arrays, it does not work well for arrays of incoherent
rays larger than the cache. The number of cache misses, due
to random memory accesses, can be significantly reduced by
using software prefetching, but cache space is still wasted.
The CPU prefetches entire cache lines (usually 64 bytes),
which are larger than a single ray. If not all rays in the cache
line are needed, half of the prefetched data is wasted.

We avoid these caching problems by simply reordering
the rays in the original array. Much more data is moved than
in the previous technique, but no extra information is needed,
and the cache is utilized highly effectively. As the rays are al-
ways accessed linearly, hardware prefetching, which is trig-
gered automatically, is sufficient. Rays can be quickly copied
in blocks of 32 (with AVX) or 16 bytes (with SSE). This fil-
tering approach is best suited for incoherent rays, in which
case it improves ray traversal performance by at least 25%.

The reordering makes it impossible to identify rays with
their array indices, which is necessary for accessing addi-
tional information linked to the rays (e.g., intersection data).
Fortunately, this does not pose a problem as there is enough
room in the ray data structure to store an ID.

SIMD instruction sets enable faster filtering by carrying
out multiple ray/box intersections at the same time. In our
implementation, we simultaneously intersect 4 rays when

using SSE and 8 rays when using AVX. Before doing so,
the ray data, which consists of § values per ray, must be
rearranged into structure-of-arrays (SoA) format. We again
leverage the SIMD-friendly layout of the rays to quickly
transpose the values with SIMD shuffle instructions.

The AABB that is tested against the rays is the bounding
volume of the current list of triangles. Computing this box
right before filtering is simple to implement, but it introduces
an additional sweep over the triangle list. We avoid this by
computing the AABB during the triangle partitioning step.

3.2. Triangle partitioning

Triangle partitioning divides a list of triangles into two dis-
joint sublists with the goal of minimizing the total num-
ber of intersections. We use two different partitioning meth-
ods: middle partitioning and SAH partitioning. Both split
the list of triangles according to the centroids of the trian-
gle AABBs. The splitting axis is always the one in which
the centroids’ AABB is widest.

The partitioning algorithms do not process the triangles
themselves, but only their AABBs. To avoid computing the
AABB of a triangle several times throughout the traversal,
and to optimize the cache usage, we precompute the AABBs
and put them into a separate array. We speed up the compu-
tations with the AABBs by storing them in a SIMD-friendly
32-byte format: the minimum and maximum bounds (which
are 3D vectors) are padded to 16 bytes so they can be directly
loaded into SSE registers.

In contrast with ray filtering, we manage a triangle ID ar-
ray instead of directly reordering the AABBs. Multiple ren-
derer threads operate on the same primitives, but each needs
a separate array to work with. Hence, we store the AABBs
only once and use multiple ID arrays, one per thread.

A simple and very fast way to partition the triangles is
middle partitioning. This consists of splitting the centroid
AABB at its spatial median and sorting the triangles into the
resulting partitions. While sweeping over the array, we also
precompute for each partition the AABB of the triangles and
the AABB of the box centroids.

For some splits, we use SAH partitioning instead, which
usually results in lower intersection costs, but it is slower. We
employ the SAH binning algorithm [Wal07] with 32 bins,
which is much faster than the approximation-free approach
[Hav00, WBS07] and produces almost as good results.

Always partitioning with the SAH does not necessarily
lead to the highest possible ray tracing performance because
its computational cost may be too high compared to the cost
of the ray intersections. We solve this problem by adaptively
deciding between SAH and middle partitioning. In each par-
titioning step, the ratio of the number of active rays and cur-
rent triangles is checked against a predefined threshold. If
this value is above the threshold, SAH partitioning is chosen.

(© The Eurographics Association 2012.

Attila T. Afra / Incoherent Ray Tracing without Acceleration Structures

Otherwise, middle partitioning is used. We have empirically
found out that a ray/triangle ratio between 1 and 2 delivers
the best results.

3.3. Triangle intersection

If a certain stopping criterion is met, the triangles are not
partitioned further, but are naively intersected with the active
rays. We stop if either the active ray count or the current
triangle count is too low. A threshold of 8 is used for both
counts. The SAH can also stop the partitioning.

In our method, a special triangle representation is used
to save memory space and bandwidth. A useful property of
triangle AABBs is that they are defined with 6 vertex coor-
dinates of the triangles: the minimum and maximum vertex
coordinates for each axis. In an additional array we store
the missing data for each triangle. This complementary data
structure contains the 3 remaining vertex coordinates and a
32-bit integer encoding the original order of the coordinates
needed for the reconstruction of the triangle vertices.

For each ray, the traversal algorithm has to compute and
store the closest intersection with the geometry. To effec-
tively use the cache, we update fmax in the original ray struc-
ture with the intersection distance. The remaining intersec-
tion data is located in an array separate from the rays because
it is less frequently accessed.

The intersection routine is composed of two nested loops.
The outer loop iterates over the list of triangles, and the inner
loops iterates over the list of active rays. The cost of triangle
decoding is negligible as it is amortized over several rays.
Similarly to the ray filtering routine, multiple rays are inter-
sected with the current triangle using SIMD.

3.4. Ordered traversal

After partitioning the triangle list, the traversal state for one
of the sublists is pushed onto a stack, and the traversal con-
tinues with the other one. The traversal state includes the
AABB of the triangles, the AABB of the box centroids, the
triangle range, and the active ray range.

For primary rays, front-to-back traversal has a significant
positive impact on the ray tracing speed. However, the im-
provement is small for incoherent rays. We determine the
traversal order with the very cheap approach from the packet
tracer by Wald et al. [WBSO07]. First, we find the axis on
which the two child boxes are furthest apart. Then, we get
the first active ray’s direction sign on that axis, and select
the first child along the respective direction.

4. Results

The benchmarks were run on two different systems: on an
Intel Core i7-960 (Nehalem, 4 cores, 8 threads, 3.2 GHz, 8
MB L3 cache) with 24 GB RAM (triple channel), and on

(© The Eurographics Association 2012.

an Intel Core i7-2600 (Sandy Bridge, 4 cores, § threads, 3.4
GHz, 8 MB L3 cache) with 8 GB RAM (dual channel).

We compared our method to a highly optimized static ray
tracer that uses the multi-BVH (MBVH) structure [WBBOS].
We built the MBVHs using the same partitioning schemes as
in our method. For up to 16K triangles, we used binned SAH
splitting. Otherwise, middle splitting was employed.

We tested the algorithms using a 1-bounce and an 8-
bounce Monte Carlo path tracer with diffuse reflections.
(The number of bounces indicates the maximum ray recur-
sion depth.) The length of the rays was infinite, and the clos-
est intersections were found. Russian roulette was not used.

Our multithreaded renderer processes one path per pixel
for the entire image in each thread. This naive multithreading
approach is suboptimal for DAC traversal because a portion
of the triangle partitioning steps are executed multiple times
on different threads. However, this is not an issue if there are
enough rays to amortize the cost of triangle partitioning. A
more efficient solution has not yet been proposed.

The performance results, in million rays per second, are
listed in Table 1. The timings for the MBVH method do not
include the acceleration structure build time. Even so, our
method is still quite competitive in most cases. For example,
MBVH is only 12% faster for the 8-bounce path tracing of
the CONFERENCE ROOM scene, on a single thread of the i7-
960. However, the difference is greater on multiple threads,
especially for HAIRBALL, where our method is 4 x slower.

Another important observation that can be made is that
AVX provides a notable speedup over SSE. Previous re-
search showed that it improves ray tracing speed for primary
rays by about 50% [Afrl 1]. For diffuse rays, the AVX ver-
sion of our method is 0—47% faster than the SSE version.
The speedup for MBVH traversal is also good: 15-31%.

The results also show that traditional ray traversal scales
better to multiple threads than DAC traversal. While MBVH
scales superlinearly with the number of cores, our method
scales sublinearly in some cases. Surprisingly, the 17-2600
mostly scales worse than the older 17-960, possibly because
of its slightly inferior memory system. For one scene, both
the SSE and AVX versions on the i7-2600 are even slower
than the SSE one on the i7-960. The multithreading speedup
is heavily scene-dependent: on 17-960 it is 3.4—4.9x, and on
17-2600 it is 1.8-5.3x. The sublinear scaling suggests that
memory bandwidth is the primary performance bottleneck.

Ray filtering is typically the most time-consuming part of
our algorithm. For CONFERENCE ROOM, ray tracing is com-
posed of 70% ray filtering, 19% triangle intersection, and
11% triangle partitioning. In such cases, naive multithread-
ing is quite efficient because partitioning has a small impact
on the overall performance. However, for complex scenes
like HAIRBALL, partitioning is more prominent: 37% filter-
ing, 25% intersection, and 38% partitioning. (Note that there
are almost 4 x more triangles than rays.)

Attila T. Afra / Incoherent Ray Tracing without Acceleration Structures

(a) CONFERENCE ROOM (282K triangles)

(b) FAIRY FOREST (174K triangles)

(c) HAIRBALL (2880K triangles)

Figure 1: Scenes used for the performance measurements.

CONFERENCE RooM FAIRY FOREST HAIRBALL

Method SIMD | CPU 1-bounce 8-bounce 1-bounce 8-bounce 1-bounce 8-bounce

ST MT | ST MT ST MT | ST MT ST MT | ST MT
Our SSE Core 17-960 1.7 58 | 1.7 6.2 14 63| 1.3 6.4 0.3 14 | 02 0.8
MBVH4 | SSE Core i7-960 22 122119 114 1.9 109 | 1.8 108 0.7 411 05 32
Our SSE Core i7-2600 2.0 52 120 5.8 1.7 6.1 | 1.6 6.7 0.3 1.6 | 0.2 0.8
Our AVX Core 17-2600 2.9 53| 28 5.8 2.5 6.5 | 2.2 7.5 04 1.8 | 0.2 1.0
MBVH4 | SSE Core i7-2600 29 161 | 2.6 149 25 140 | 25 139 0.9 5.1] 0.7 4.0
MBVHS8 | AVX Core 17-2600 3.8 204 | 33 185 3.1 17.1 | 3.0 16.6 1.1 6.1 | 09 4.6

Table 1: Performance in million rays per second (Mray/s) for diffuse rays generated with 1-bounce and 8-bounce path tracing
(no Russian roulette). The scenes were rendered from the views shown in Figure 1 at 1024 x 768 resolution. Both single-threaded
(ST) and multithreaded (MT) speeds were measured. The timings do not include ray generation, shading, and MBVH building.

Compared to Mora’s method, our approach filters rays
more efficiently, uses higher quality object partitioning, ex-
ploits wider SIMD, and is optimized for incoherent rays. On
one thread, on slightly higher clocked CPUs, for CONFER-
ENCE RoOM, our SSE code is 1.3-1.5x faster, while the
AVX one is 2.2x faster. The methods use similar amounts
of memory. For R rays, T triangles, and N threads, our
method uses 32R + (48 + 4N)T bytes, whereas Mora’s uses
36R+ (40 +4N)T bytes (excluding the stack and hit data).

5. Conclusions and Future Work

We have presented a new divide-and-conquer ray tracing
algorithm optimized for incoherent rays, which does not
use any acceleration structures. Our method outperforms the
only other similar solution and is competitive against stan-
dard algorithms that require major precomputations.

The main drawback of DAC ray tracing methods is that
they are more difficult to efficiently parallelize than tradi-
tional approaches, and thus they do not work optimally with
naive multithreading. In the future, we would like to develop
a better multithreaded variant of the algorithm.

Acknowledgements

This work has been supported by POSDRU/107/1.5/S/76841
and by OTKA K-719922 (Hungary).

References

[Afr11] AFRA A. T.: Improving BVH ray tracing speed using
the AVX instruction set. In EG 2011 - Posters (Llandudno, UK,
2011), Eurographics Association, pp. 27-28. 3

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Department of Computer Science and Engineering, Fac-
ulty of Electrical Engineering, Czech Technical University in
Prague, November 2000. 1, 2

[KW11] KELLER A., WACHTER C.: Efficient ray tracing without
auxiliary acceleration data structure. High-Performance Graph-
ics 2011 (Poster) (2011). 1

[Morl1l] MORA B.: Naive ray-tracing: A divide-and-conquer ap-
proach. ACM Transactions on Graphics 30, 5 (October 2011),
117:1-117:12. 1,2

[Wal07] WALD I.: On fast construction of SAH-based bounding
volume hierarchies. In Proceedings of the 2007 IEEE/EG Sym-
posium on Interactive Ray Tracing (2007), pp. 33—40. 2

[WBB08] WALD I., BENTHIN C., BouLOs S.: Getting rid
of packets — Efficient SIMD single-ray traversal using multi-
branching BVHs. In Proceedings of the 2008 IEEE/EG Sym-
posium on Interactive Ray Tracing (2008), pp. 49-57. 3

[WBS07] WALD I., BouLOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (January 2007), 6:1-6:18.
2,3

[WMG*09] WALD I., MARK W. R., GUNTHER J., BOULOS S.,
1zE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the art
in ray tracing animated scenes. Computer Graphics Forum 28, 6
(2009), 1691-1722. 1

(© The Eurographics Association 2012.

