
Volume 0 (2012), Number 0 pp. 1–14 COMPUTER GRAPHICS forum

Interactive Ray Tracing of Large Models Using Voxel
Hierarchies

Attila T. Áfra1,2

1Budapest University of Technology and Economics, Hungary
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Abstract

We propose an efficient approach for interactive visualization of massive models with CPU ray tracing. A voxel-
based hierarchical level-of-detail (LOD) framework is employed to minimize rendering time and required system
memory. In a preprocessing phase, a compressed out-of-core data structure is constructed, which contains the
original primitives of the model and the LOD voxels, organized into a kd-tree. During rendering, data is loaded
asynchronously to ensure a smooth inspection of the model regardless of the available I/O bandwidth. With our
technique, we are able to explore data sets consisting of hundreds of millions of triangles in real-time on a desktop
PC with a quad-core CPU.

Categories and Subject Descriptors (according to ACM CCS): Three-Dimensional Graphics and Realism [I.3.7]:
Raytracing—Methodology and Techniques [I.3.6]: Graphics data structures and data types—

1. Introduction

Real-time visualization and inspection of highly complex
3D models are required in many scientific, engineering, and
entertainment domains. Examples of such domains include,
among others, computer-aided design (CAD), 3D scanning,
numerical simulation, virtual reality, and video games. Many
massive models consist of hundreds of millions of primi-
tives (e.g., triangles), occupying tens of gigabytes of space.
Even though processor performance and memory capacity
are rapidly increasing, the exploration of such immense data
sets can still be problematic on a single commodity PC.

Real-time ray tracing has become an active research area
in the past few years, mostly thanks to the emergence of af-
fordable, high-performance parallel processor architectures
like multi-core CPUs and programmable GPUs. This ren-
dering technique can be easily parallelized and enables the
precise simulation of optical phenomena such as shadows,
reflections, and refraction. It is a significantly more versa-
tile approach than rasterization, the currently most popular
real-time rendering algorithm.

This paper presents a new massive model rendering
method based on ray tracing, efficiently combining the ad-
vantages and techniques of different existing approaches.

The most notable of these are the R-LODs [YLM06] and Far
Voxels [GM05] methods. Some of the details of the system
were introduced in [Áfr10].

Several testing examples demonstrate that our method
works effectively for different types of complex models,
achieving interactive frame rates on a quad-core desktop PC.
It supports a wide variety of ray traced shading algorithms,
which include direct lighting with shadows, ambient occlu-
sion, and global illumination (see Figures 1 and 3).

2. Previous Work

In this section, we briefly discuss the methods most closely
related to our work. For a comprehensive overview of the
topic of large model rendering, we refer the reader to
[YGKM08].

QSplat [RL00,RL01] is a point splatting technique which
uses a bounding sphere hierarchy for level-of-detail (LOD)
rendering with visibility culling. The model representation
is compressed by quantizing the nodes of the hierarchy. The
QSplat algorithm works well for laser-scanned models, but
is not suitable for architectural or CAD models.

Layered Point Clouds [GM04] handle large point-based
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Figure 1: Large models rendered with the proposed method: Boeing 777 (337M triangles), Mandelbulb (354M triangles), MPI
v1.0 (73M triangles), and Lucy (28M triangles). All images were rendered interactively with shadows and one bounce of indirect
illumination at 1024× 768 resolution and 3 pixels of error. The processor used was an Intel Core i7-2600 quad-core desktop
CPU. The scenes are lit with two light sources: a point light and a hemispherical environment light.

models by organizing the point primitives into a multires-
olution hierarchy. The points are grouped into clusters of
approximately constant size to improve the efficiency of
CPU/GPU communication, which is crucial for optimal ren-
dering performance.

The Far Voxels [GM05] algorithm renders massive polyg-
onal models by employing a LOD framework based on cu-
bical view-dependent voxels, uses asynchronous I/O, and is
optimized for GPUs. It renders voxels by splatting, which
has the disadvantage that the approximation quality for com-
plex CAD models can be low if the needed data has not been
entirely loaded yet. The achieved frame rates are high, but
only relatively simple shading is supported.

Quick-VDR [YSGM04] uses a clustered hierarchy of pro-
gressive meshes for out-of-core rendering and occlusion
culling. Without geomorphing, popping artifacts may occur
when switching between different LODs.

Wald et al. [WDS04] presented a ray tracing method to vi-

sualize the Boeing 777 model in real-time. The I/O is asyn-
chronous to avoid data access latencies, and the unavailable
geometry is represented with a small number of volumetric
proxies. This is not a full LOD solution, therefore, the ray
traversal depth and the working set size are not reduced.

The ray tracing based algorithm proposed by Yoon et al.
[YLM06] uses drastic simplifications, called R-LODs, to im-
prove rendering performance and to minimize the amount of
required memory. The R-LODs are tightly integrated with a
kd-tree used as an acceleration structure, and they consist of
simple planes bounded by tree nodes, which have limited ap-
proximation capability. The latency caused by the data load-
ing is not hidden, because the approach uses memory map-
ping to access the out-of-core data structure.

Other approaches use LOD-less compact in-core repre-
sentations [LYTM08, SE10], which have reduced memory
requirements, but the size of the scene is still limited by
the amount of available memory. Also, ray coherency tech-
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(a) 1s, 1% (23 MB) (b) 3s, 5% (75 MB) (c) 8s, 10% (167 MB)

(d) 16s, 21% (330 MB) (e) 35s, 50% (796 MB) (f) 62s, 100% (1596 MB)

Figure 2: The model data is loaded asynchronously in the background. Although this may cause temporary blocking artifacts,
the exploration remains fluid. This figure shows this effect in case of the Boeing 777 model. The labels indicate the elapsed time
from the beginning of the loading process, the loading progress percentage, and the size of the working set.

niques [Wal04,RSH05,ORM08,GR08] have low applicabil-
ity in such cases because of the lack of simplification.

Although several massive model visualization techniques
exist, many of them perform adequately only for specific
types of models. This is one of the remarkable deficiencies of
previous approaches, which are addressed by our proposed
method.

3. Method Overview

The main goal is to seamlessly explore massive models, con-
sisting of possibly hundreds of millions of triangles, on a
single commodity PC. In order to achieve this, we first con-
struct a hierarchical out-of-core data structure (Section 4),
which contains, in a compressed format, the original trian-
gles and several LOD levels consisting of voxels. These lev-
els correspond to simplified versions of the data set at dif-
ferent resolutions. The reason we have decided to use vox-
els for model simplification is because they are suitable for
geometry with very complex topology, comprising of many
detailed, loosely connected, interweaving parts (e.g., pipes
and wires) [GM05, CNLE09, LK10].

Thanks to the hierarchical LOD mechanism, it is possible
to render huge data sets that cannot be completely loaded
into the system memory. During rendering, we load the nec-
essary details asynchronously, thus, there is no stuttering due
to insufficient available data (see Figure 2). Also, the explo-
ration starts immediately, without any loading time.

The choice of the ray tracing acceleration structure is very

important, as it directly affects the rendering speed and the
size of the working set. There are many factors that should
be considered, including the hardware architecture, the the-
oretical capabilities of the construction and traversal algo-
rithms, the type of rays, and the characteristics of the scenes
[SKHBS02].

We organize all primitives (i.e., the triangles and voxels)
into a kd-tree, a simple and efficient acceleration structure.
The kd-tree is essentially a binary space partitioning (BSP)
tree in which every non-leaf node divides the space into two
subspaces with an axis-aligned plane, and the leaf nodes
contain references to primitives. It is considered one of the
best performing acceleration structures for ray tracing static
scenes [Hav00], especially massive models [YGKM08], on
the CPU.

This out-of-core kd-tree has a dual purpose in our ap-
proach: it speeds up the ray intersections with the triangles,
and stores the voxel hierarchy. The kd-tree is a data structure
that yields good performance for both tasks.

A subset of the kd-tree nodes contain a single LOD voxel
(Section 4.2), which is a primitive rendered as an axis-
aligned box. It roughly approximates the original primitives
(i.e., triangles) stored in the subtree of the corresponding
node and holds shading attributes (e.g., normal, color) per
box face. The voxel completely fills the space subtended by
the node, and thus it is not necessarily cubic in shape.

The entire kd-tree is decomposed into treelets (Section
4.3), which are grouped into equally sized blocks. In order
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Figure 3: The Boeing 777 model (337M triangles) rendered in real-time with shadows and one-bounce indirect illumination.

to reduce storage requirements, the blocks are encoded us-
ing a lossless data compression algorithm (Section 4.7).

We employ a custom, purely software-based memory
manager (Section 5), which is responsible for the loading
of the blocks required by the renderer. We have designed the
out-of-core data structure with a software solution in mind,
and as a consequence, the software address translation over-
head is greatly reduced. On the other hand, the application
of a custom memory management mechanism enables us to
perform superior block caching and on-the-fly decompres-
sion.

The tight integration of the LOD levels with the acceler-
ation structure enables an efficient model representation and
ray traversal algorithm. One of the advantages of our ap-
proach is that existing traversal algorithms can be elegantly
extended to support the proposed voxel hierarchy with small
overhead (Section 6.1). To exploit the high coherency of pri-
mary and shadow rays, we trace them in packets.

By using LOD voxels, significantly higher frame rates can
be achieved, with minimal loss of image quality, because ray
traversals are less deep, memory accesses are more coher-
ent, and intersections with voxels are free, contrary to trian-
gles (the voxel fills its parent node, therefore, the intersec-
tion is equal to the already computed intersection with the
node). Furthermore, the LOD framework can also reduce the
amount of aliasing artifacts, especially in case of highly tes-
sellated models. We provide fast LOD error metrics for pri-
mary, shadow, ambient occlusion, and diffuse interreflection
rays (Section 6.2).

4. Out-of-Core Data Structure

In this section we present the format of our compressed data
structure used for LOD-based ray tracing, and an out-of-core
algorithm for its construction from the full resolution model.

The entire data structure is divided into 64 KB blocks,
which allows simple and efficient memory management.
These are similar to memory pages handled by the CPU and
the operating system, which commonly have a size of 4 KB.

An important benefit of custom memory management is
the possibility to store the blocks on the hard disk in a com-
pressed form and decompress them in real-time. This not
only reduces storage requirements, but may also increase
loading performance because less disk operations are nec-
essary.

4.1. Kd-tree building

The main part of the construction process is the building of
the kd-tree, which consists of the recursive spatial partition-
ing of the scene using axis-aligned planes. The inner nodes
of the kd-tree contain an axis-aligned splitting plane, and the
leaf nodes refer to one or more (up to 128) triangles.

We assume that the input for the construction algorithm
is stored as a triangle soup (i.e., a simple list of triangles
without shared vertex data) in a file. First, we calculate the
axis-aligned bounding box of the model, then we proceed
with the building of the kd-tree nodes, in depth-first order.

If all primitives belonging to a node can fit into the mem-
ory, we determine the splitting plane using the well-known
surface area heuristic (SAH), which produces high quality
results [Hav00]. Otherwise, we split the node in the middle
(i.e., the spatial median), in an out-of-core fashion. This op-
eration takes as input a triangle list stored in a file stream,
and produces two new streams corresponding to the children
of the respective node.

The sifting of the triangles into two sublists can be
achieved in only a single sweep over the input file stream.
This is an important property of the method because disk
I/O operations are very time-consuming. Although splitting
in the middle is almost always inferior to the surface area
heuristic, only a relatively small amount of nodes close to
the root are required to be built this way.

We stop subdividing and create a leaf node if the SAH
cannot find a beneficial split, or if the number of triangles
in the node is one. However, if the SAH fails to choose a
splitting plane, and the triangle count is above a predefined
threshold (e.g., 128), we split the node in the middle and
continue the subdivision.
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(a) With empty space cutting (b) Without empty space cutting

Figure 4: The highest resolution voxel-based LOD level of
the Bunny model constructed with and without empty space
cutting. The image on the right shows that using solely the
SAH does not result in satisfactory approximation quality.

To produce a tight voxel-based approximation of the origi-
nal geometry, the kd-tree cells, which bound the voxels, must
not contain large empty spaces. The SAH alone is capable of
cutting off empty space, but it can still produce many unnec-
essarily large cells (see Figure 4). We solve this problem by
additionally employing an aggressive empty space cutting
strategy [Hav00, RSH05]. Before selecting a splitting plane
using one of the mentioned methods or making the node a
leaf, we check whether we can create an empty child node
that has a volume respective to the original cell larger then a
specified threshold (we used values between 10–20%). This
approach not only improves LOD quality, but also increases
ray tracing performance. We use it for both SAH-based and
spatial median splits.

4.2. LOD voxels

The size of a LOD voxel is identical to the size of the kd-tree
node in which it is located. This means that the only data
which must be stored to represent a voxel are the shading
attributes.

In our implementation, we use two types of shading at-
tributes: normal and color. A set of shading attributes con-
stitute a shading attribute sample. When creating a voxel,
we compute shading attribute samples for each of its six
sides. We average these samples, and if the maximum abso-
lute difference between the samples and the average is below
a threshold, we store only the average sample in the voxel (1-
sample voxel). Otherwise, we store separate samples for the
six sides (6-sample voxel).

Creating and storing voxels in every kd-tree node is very
expensive, therefore, we compute voxels only for a subset of
the nodes. We significantly reduce the amount of voxels by
storing them only in inner nodes. Since a kd-tree node par-
titions space only in one dimension, it is adequate to select
only every third inner node on the path from the root to a
leaf. This not only reduces memory requirements, but also

improves ray traversal performance because the LOD error
metric must be evaluated only for nodes that contain voxels.
Note that it is not essential to enforce having splits along all
three axes between two consecutive voxels on a path.

If we have to build a node out-of-core, we combine the
computation of the voxel shading attribute samples with the
triangle sifting process. We rasterize the triangles onto six
image planes corresponding to the sides of the respective
voxel. Depth testing is performed to take into account oc-
clusion. After processing all triangles, we average the un-
occluded samples. When building a subtree in-core, we em-
ploy adaptive Monte Carlo ray sampling. This can be im-
plemented very efficiently by using the prebuilt kd-subtree
rooted at the current node to accelerate the ray traversal.

We lossily compress the normals into 15 bits by storing
them as points on a cube [LK10]. We encode the face of the
cube (1-bit sign and 2-bit axis) and two coordinates on the
face (6-bit signed integers u and v). The colors are stored in
15-bit RGB format (5 bits per channel). Using these encod-
ings, a shading attribute sample can be packed into a 32-bit
integer (Table 1). One of the 2 remaining bits is used to indi-
cate whether the sample belongs to a 1-sample or a 6-sample
voxel.

The total size of a 1-sample voxel is 4 bytes, and thus a
6-sample voxel is 24 bytes.

Bits Value
0–4 color red
5–9 color green
10–14 color blue
15 normal sign
16–17 normal axis
18–23 normal u
24–29 normal v
30 unused
31 1-sample voxel flag

Table 1: The memory layout of 4-byte voxel shading at-
tribute samples.

4.3. Treelets

We decompose the kd-tree and all related data into treelets
which are small subtrees with a fixed maximum height of 3.
See Figure 5 for an example. We store the treelets in breadth-
first order and the nodes inside the treelets in preorder. The
treelets are packed into blocks, a block containing multiple
consecutive treelets from the same level (Figure 6).

As there are voxels only in every third tree level (with
the exception of leaf nodes), treelets that have roots at the
same depth constitute a LOD level. According to this treelet
layout, the LOD levels are stored continuously and consec-
utively, starting with the lowest level-of-detail.
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basic node

LOD node

leaf node

treelet

Figure 5: The treelet decomposition of an out-of-core kd-
tree.

A treelet consists of different types of kd-tree nodes,
which may refer to additional data. Every treelet must have
at least one inner node containing a LOD voxel (called a
LOD node) or a leaf node containing triangles.

To encode the nodes in a highly compact way, variable
size treelet nodes are used. The size of a node is either 8 or
16 bytes, so a cache-friendly memory alignment is possible.
Also, the bit representation is carefully designed to minimize
the number of operations required to unpack the node data.

A notable property of the ordering of the nodes is that a
node is always stored at an address lower than that of its left
child, which in turn has an address lower than the right one.
This enables us to reference child nodes with strictly positive
offsets.

4.4. Basic nodes

We call inner nodes that do not contain voxels basic nodes.
These have children located in the same treelet. In addition to
the type of the node and the splitting plane, child addresses
are also encoded. The amount of required bits is reduced by
storing the offset of the left child from the parent and the
offset of the right child from the left one. These offsets are
strictly positive and are multiples of 4.

A significant amount of the child nodes are empty leaves,
which should not be stored to save memory. An efficient
solution is to encode bits in the inner nodes that indicate
whether a child node is empty or not.

L0

block 0

block 1

block i block i+1

L1

Lp

block j block j+1

Ln-1

triangle block k triangle block k+1

Ln

Figure 6: The block layout of the out-of-core data structure.
The blocks are grouped into LOD levels (L). The treelets, in-
cluding the voxels, are stored in breadth-first order in levels
0 to n−1, whereas the triangles are in level n, the last level.

Basic nodes can be fit into 8 bytes as shown in Table 2.
Note that this is also the size of the compact in-core node
representation proposed by Wald [Wal04].

Bits Value
0–1 split axis
2–15 left child offset from this node
16 left child empty flag
17–20 right child offset from left child
21 right child empty flag
22–28 unused
29 voxel flag (0)
30 unused
31 inner node flag (1)
32–63 split position

Table 2: The memory layout of 8-byte basic nodes.

4.5. LOD nodes

An inner node that incorporates a voxel is called a LOD
node. It is a treelet leaf, which points to roots of other treelets
that are located in a different block. We encode a child ad-
dress as a 32-bit block ID and an offset. This way, the size of
the addressable memory space is 256 TB. In order to store
only one block ID, the two child treelets are restricted to be
in the same block.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Attila T. Áfra / Interactive Ray Tracing of Large Models Using Voxel Hierarchies

During rendering, voxels are significantly less frequently
accessed than nodes. A cache-efficient layout is to store the
voxels separately from the nodes. In this case, a node must
also contain an offset to its voxel.

When the ray tracer accesses a LOD node, it has to com-
pute a LOD error value to decide whether to continue with
the traversal or not. This error value depends, among others,
on the size of the voxel, the on-the-fly calculation of which
is costly. Therefore, the size is stored in the tree, encoded
as the radius of the sphere enclosing the respective voxel.
This radius is kept in the node data structure because it is
a frequently accessed value. Thus, the size of LOD nodes
excluding the voxel data is 16 bytes (see Table 3).

Bits Value
0–1 split axis
2–15 left child offset from this node
16 left child empty flag
17–20 right child offset from left child
21 right child empty flag
22–28 voxel offset from this node
29 voxel flag (1)
30 unused
31 inner node flag (1)
32–63 split position
64–95 enclosing sphere radius
96–127 children block ID

Table 3: The memory layout of 16-byte LOD nodes.

4.6. Leaf nodes

The leaf nodes in a kd-tree contain a subset of the original
triangles, and, usually, many of these triangles are shared by
multiple nodes. Because of this, it is not efficient to store the
triangles themselves in each node.

In case of simple in-core kd-tree representations, it is
common practice to store each triangle only once in a global
array, and create triangle lists that belong to the leaf nodes
which contain pointers to the triangles. The nodes, triangles
lists, and triangles are put into different buffers.

For our out-of-core data structure, we take a similar ap-
proach. However, instead of global buffers, we create trian-
gle blocks, each divided into a triangle list section, a trian-
gle section, and a vertex section. These blocks represent the
highest level-of-detail, and we output them after the other
blocks (see Figure 6).

The triangle list section contains a series of 16-bit offsets
that point to 12-byte triangle structures (with color). Usually,
the model is a mesh, so a vertex may belong to more than one
triangle. To further minimize the storage requirements, the
unique vertices are stored in the vertex section, and the tri-
angle structures contain three offsets to one of these vertices.
The shared vertices are determined by using a hash table. If

the vertices have only a position attribute, they are encoded
in 12 bytes.

A leaf node is a simple 8 byte structure (see Table 4),
which contains a reference to a triangle list and the num-
ber of triangles in that list. The list reference is expressed as
a block ID and an offset from the beginning of the block.

Bits Value
0–15 triangle list offset
16–23 triangle count
24–30 unused
31 inner node flag (0)
32–63 triangle block ID

Table 4: The memory layout of 8-byte leaf nodes.

4.7. Compression

On-the-fly decompression should not degrade significantly
the rendering performance, thus we apply an LZ77 family
algorithm [ZL77], which provides very fast decompression
speed. It compresses data losslessly by replacing previously
encountered strings with offset and length pairs. Therefore,
decompression basically consists of a series of string copy-
ing operations. We use a byte-aligned encoding method to
minimize decompression complexity.

The decompression speed on a single core of an Intel Core
i7-2600 processor is more than 700 MB/s.

5. Memory Management

The previously described out-of-core model data structure
is accessed by the renderer through a custom memory man-
ager, which can be implemented entirely in software. This
design enables us to tailor and fine tune the data loading and
caching for our needs and, at the same time, hide the com-
plexity of the memory management from the ray tracer.

The memory manager operates on the granularity of
blocks, which means that the smallest unit of data that can
be loaded and cached is a block. This is very similar to the
way paged virtual memory works, which is implemented by
the operating system and requires hardware support, typi-
cally in the form a memory management unit (MMU) built
into the CPU. If there are no page faults, virtual memory
accesses have very small overhead thanks to the hardware
address translation performed by the MMU.

Most operating systems featuring virtual memory (e.g.,
Windows, Linux) have support for memory-mapped files,
which enable efficient file I/O entirely through memory ac-
cesses. Unfortunately, this facility has a few significant lim-
itations that negatively impact some usage scenarios.

From our point of view, the most significant deficiencies
of memory mapping are the lack of native, cross-platform
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asynchronous I/O and on-the-fly decompression. Note that
the Linux kernel has special memory mapping functions
(mincore and madvise) that can be used to manually imple-
ment a limited form of asynchronous data access [WDS04],
but this approach does not support compression and is heav-
ily operating system dependent. Thus, we have opted for a
purely software memory management system.

Since we want to exploit the power of multi-core and
multi-processor systems, the memory manager must support
multiple concurrent renderer threads. The amount of syn-
chronization between the threads should be minimized. We
accomplish this by synchronizing only between rendering
two consecutive frames.

Blocks required by the renderer threads are loaded and de-
compressed into a fixed-size cache by one or more separate
fetcher threads. The cache consists of slots, and a simple ta-
ble is used to store the mapping between block IDs and cache
slot IDs.

We associate with each cache slot a timestamp, which
indicates when the block stored in the respective slot was
last accessed. This information is used to determine which
blocks should be evicted from the cache if there are not
enough free cache slots to load new blocks. The current
timestamp is incremented after each synchronization.

5.1. Block requests

If a renderer thread wants to access data residing in a block,
it requests the address of the block from the memory man-
ager. First, the memory manager checks whether the block is
loaded into the cache. If so, it updates the timestamp of the
proper cache slot by replacing the old value with the present
timestamp, and performs address translation by computing
and returning the block pointer. Otherwise, it adds an entry
to the request list of the renderer thread and returns a null
pointer. In this case, the renderer should also specify a data
ID, a value that identifies the data inside the block it wants
to access. This value can be used by the memory manager to
assign a better priority value to the block.

Updating a timestamp must be done carefully because
multiple threads may attempt to change that value at the
same time. For this, we exploit the atomic store operation
of the CPU, which provides a safe and efficient lock-free
[Fra04] solution.

The address translation, not being accelerated by an
MMU, is a relatively costly operation, therefore, the renderer
should not invoke it at every memory access. The ray traver-
sal algorithm does not require frequent block requests, so the
overhead is minimal.

5.2. Fetcher threads

The fetcher threads continuously load the blocks referenced
in a fetch list into preallocated cache slots. After loading and

decompressing a block, we do not immediately mark it as
available. As a consequence, the set of available blocks is
constant throughout the computation of a frame.

By running more than one fetcher thread, the disk read op-
erations can be executed more efficiently. This is especially
true if the data is compressed. While one fetcher thread is
waiting for a compressed block to be read from the file, an-
other thread can decompress an already loaded block. How-
ever, we must be careful not to run too many fetcher threads,
which can degrade the rendering performance. Fortunately, a
small amount of fetcher threads (e.g., 4) is usually sufficient
to achieve satisfying loading speeds.

5.3. Cache update

After finishing the rendering of a frame, the renderer should
request a cache update, which is a major thread synchroniza-
tion point. During this entire process, the renderer threads
may not request blocks.

As a first step, we stop all fetcher threads. Then, we mark
all freshly loaded blocks as available and update a least re-
cently used (LRU) list based on the timestamps of the cache
slots. We gather the requests from the request lists and as-
sign priority values to them. The higher a priority value is,
the sooner the block will be loaded.

The priority of a block is the maximum of the number of
requests per data ID per block. By taking into account the
data IDs too, we can achieve that a block with even a single
piece of outstandingly important data will be loaded sooner
than a block with several less important ones.

In the next step, we generate block fetch jobs, sort them by
their priority, and put them into the fetch list, discarding its
previous contents. We limit the length of the fetch list based
on the estimated maximum I/O bandwidth. This fetching ap-
proach is similar to the one incorporated into the Streaming
QSplat algorithm [RL01].

Because blocks must not be removed from the cache while
rendering, we preallocate cache slots for the blocks to be
fetched. If the cache is full, we use the LRU list to evict
blocks. We do not remove blocks that are part of the current
working set to prevent cache thrashing.

Finally, we resume the fetcher threads in order to start
loading and decompressing the blocks specified in the newly
populated fetch list.

6. Ray Tracing

Once we have constructed the out-of-core data structure for
a scene, we can render it using LOD-based ray tracing. As
already mentioned, the ray tracer accesses the data structure
through the custom memory manager.

To compute the color of a pixel, we cast a ray from the
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camera viewpoint through the pixel and find its nearest inter-
section with the geometry. Then, we perform shading at the
intersection point while optionally casting secondary rays.

Ray casting consists of two main operations: ray traversal
and primitive intersection. For our rendering approach, the
acceleration structure corresponds to the out-of-core kd-tree,
and the primitives are of two types: triangles and voxels.

6.1. Ray traversal

We extend the kd-tree traversal algorithm proposed by Wald
[Wal04] to support LOD voxels and asynchronous loading,
as shown in Algorithm 1. During traversal, we additionally
maintain the reference to the last encountered voxel on the
current path. When we reach a LOD node, we update this
reference and compute a LOD error value. If the error does
not exceed a specified threshold, we return the intersection
of the ray with the voxel and stop the traversal.

It may happen that we cannot continue with the traver-
sal from the current node because the required data (child
node or triangle list) is not yet loaded into memory. In this
case, we return the intersection with the last encountered
voxel. We always return the intersection distance to the cur-
rent node, even if it does not contain a voxel. This means
that we clip the last encountered voxel to the bounds of the
current node.

Determining the distance to the intersection of the ray
with a voxel is trivial. Since voxels are bounded by kd-tree
nodes, the intersection distance is given by the lower bound
of the current ray segment. However, getting the shading at-
tributes at the intersection point may involve additional com-
putations. If the voxel has only one sample, the solution is
simple because the shading attributes are constant through-
out its surface. But this is not the case if there are sepa-
rate samples for the six sides of the voxel. Simple nearest-
neighbor filtering is sufficient, therefore, we have to deter-
mine on which side of the voxel the intersection point is.

A side can be identified by an axis and a sign. The axis
of an intersected voxel side cannot be determined implic-
itly, but the sign is always the opposite of the sign of the ray
direction along the axis of the side. We solve this problem
by maintaining in each traversal step the axis of the plane
through which the ray enters the node, the entry axis. If we
traverse the front child node, the entry axis does not change.
However, if we traverse the back child, the entry axis be-
comes the axis of the splitting plane of the parent node.

We exploit the coherency of primary and shadow rays
by tracing them in packets of 4 × 4 [Wal04, Ben06]. Ray
coherency techniques like packet tracing have limited ben-
efit for large models rendered at full resolution because
coherence decreases with geometric complexity. However,
LOD-based ray tracing does not have this downside, because
traversals are terminated before they substantially diverge.

Algorithm 1 Single ray traversal
1: hit.t←∞
2: (ray.tMin, ray.tMax, entryAxis)← IntersectAABB(ray, root)
3: if IsRayInvalid(ray) then
4: return hit
5: node← root
6: voxel← NULL
7: loop
8: loop
9: if IsLeaf(node) then

10: block← GetBlockAddress(node.blockID)
11: if block = NULL then
12: RequestBlock(node.blockID)
13: hit← IntersectVoxel(ray, hit, voxel, entryAxis)
14: return hit
15: triangles← block + node.trianglesOffset
16: hit← IntersectTriangles(ray, hit, triangles)
17: if hit.t ≤ ray.tMax then
18: return hit
19: break
20: if IsLOD(node) then
21: voxel← node + node.voxelOffset
22: block← GetBlockAddress(node.blockID)
23: if block = NULL then
24: RequestBlock(node.blockID)
25: hit← IntersectVoxel(ray, hit, voxel, entryAxis)
26: return hit
27: if node.voxelRadius ≤ ray.tMin · C then
28: hit← IntersectVoxel(ray, hit, voxel, entryAxis)
29: return hit
30: nodeBase← block
31: else
32: nodeBase← node
33: t← node.splitPosition − ray.origin[node.splitAxis]
34: t← t / ray.direction[node.splitAxis]
35: front← Sign(ray.direction[node.splitAxis])
36: back← 1 - front
37: if t > ray.tMax then
38: if not node.childFlags[front] then
39: break
40: node← nodeBase + node.childOffsets[front]
41: else if t < ray.tMin then
42: if not node.childFlags[back] then
43: break
44: node← nodeBase + node.childOffsets[back]
45: else
46: if node.childFlags[back] then
47: backNode← nodeBase + node.childOffsets[back]
48: PushState(backNode, voxel, t, ray.tMax, splitAxis)
49: if not node.childFlags[front] then
50: break
51: node← nodeBase + node.childOffsets[front]
52: ray.tMax← t
53: if IsStateStackEmpty() then
54: return hit
55: (node, voxel, ray.tMin, ray.tMax, entryAxis)← PopState()
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Model Tris Primary rays Primary, shadow rays Primary, shadow, diffuse rays
Speed Working set Speed Working set Speed Working set

Asian Dragon 7M 47.6 fps 108 MB 33.4 fps 118 MB 6.4 fps 119 MB
Power Plant 12M 45 fps 62 MB 23.1 fps 74 MB 3.2 fps 98 MB
Lucy 28M 62 fps 143 MB 41.4 fps 145 MB 7.7 fps 148 MB
MPI v1.0 73M 39.8 fps 165 MB 26 fps 174 MB 4.1 fps 224 MB
Boeing 777 337M 36.6 fps 834 MB 24.5 fps 945 MB 6.6 fps 1019 MB
Mandelbulb 354M 28.2 fps 598 MB 16.4 fps 667 MB 3.5 fps 693 MB

Table 5: Rendering speed and working set size measurements for the test models at 1024×768 resolution and 3 pixels of error.
The listed values are averages from 4 representative views. The benchmarks have been performed on an Intel Core i7-2600
processor with three different rendering methods: direct illumination without shadows (i.e., ray casting), direct illumination
with point-light shadows, and both direct and indirect illumination. We cast one shadow ray per primary or diffuse ray, and
two random diffuse rays per primary ray. The diffuse rays are used to compute both one bounce of indirect irradiance and
environment irradiance, which are processed with a bilateral filter [TM98] to eliminate noise.

6.2. LOD error metric

For primary rays, we employ a simple and low-cost pro-
jected screen-space error metric. The error threshold is ex-
pressed as the maximum tolerated screen-space area of a
projected voxel, which is sometimes known as pixels of er-
ror (PoE) [YSGM04, YLM06]. The higher the PoE value
is, the less detailed but faster is the rendering. The quality
degradation can be seen on Figure 9.

To simplify the calculations, we approximate the voxel
with its enclosing sphere and compare its screen-space ra-
dius with a threshold. The value of this threshold is simply
the radius (R̂max) of the circle which area is equal to the PoE.

The estimated perspective projected screen-space radius
(R̂) of a voxel enclosed by a sphere with radius R can be
written as:

R̂ = λ
R

tmin
,

λ =
w/2

tan(φ/2)
,

(1)

where tmin is the distance from the ray origin to the closest
intersection with the voxel, and λ is a screen-dependent con-
stant determined by the number of pixels w along the field
of view φ. To efficiently check whether the error metric is
satisfied, we evaluate the following rearranged inequality:

R ≤ tminC , (2)

where C is a global for all primary rays. This can be precom-
puted the following way:

C =
R̂max

λ
. (3)

Thus, only a multiplication and a comparison operation
must be executed for each encountered voxel.

This error metric can be easily used for shadow rays too

Model Tris Size Compr. Build
ratio time

Asian Dragon 7M 0.4 GB 70% 5m
Power Plant 12M 0.5 GB 54% 7m
Lucy 28M 1.5 GB 68% 21m
MPI v1.0 73M 4.6 GB 58% 1h 3m
Boeing 777 337M 31.4 GB 66% 7h 43m
Mandelbulb 354M 7.5 GB 59% 1h 44m

Table 6: Construction statistics for the test models: the num-
ber of triangles in the model, the size of the compressed out-
of-core data structure, the compression ratio relative to the
full uncompressed data structure (which includes the kd-tree,
the voxels, and the triangles), and the build time (single-
threaded).

because shadows are projections, similar to perspective or
orthogonal camera projections. It can also be adapted with
a slight modification to ambient occlusion and diffuse inter-
reflection rays. For such rays we specify the error threshold
in steradians instead of pixels. As in [PFHA10], we assume
that hemispherically sampled rays subtend on average a solid
angle of 2π/n steradians, where n is the number of rays. An
important limitation of our simple LOD error metric is that it
does not work with refraction and non-planar reflection rays.

One of the common problems of ray tracing is to avoid
self-intersections due to numerical imprecisions when cast-
ing secondary rays. This is usually solved by ignoring in-
tersections closer than an epsilon threshold. For LOD-based
ray tracing, we must additionally ignore intersections with
the voxel selected by the previous ray. This can be achieved
by increasing the threshold with the diameter of the voxel.

7. Results and Discussion

All benchmarks were performed on a desktop PC with an
Intel Core i7-2600 (4 cores, 8 threads, 3.40 GHz) processor,
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Figure 7: The scaling of the ray casting performance with
the model complexity. We have created simplified versions of
the Mandelbulb model (354M triangles) and rendered them
from the same viewpoint. We have measured the render time
of a single frame with and without using LOD. Note that
with LOD, the performance becomes nearly constant after a
certain model complexity.

8 GB RAM, and two 7200 RPM hard disks in RAID 0 setup.
The system was running Ubuntu Linux 11.04 64-bit.

For our performance evaluations, we have selected test
models from different application domains: Power Plant
(12M triangles) is a CAD model of a coal-fired power plant;
Asian Dragon (7M triangles) and Lucy (28M triangles) are
high resolution laser-scanned statues; MPI v1.0 (73M tri-
angles) is a virtual reconstruction of the Max Planck Insti-
tute for Informatics building [HZDS09]; Boeing 777 (337M
triangles) is a highly complex CAD model of an airplane;
Mandelbulb (354M triangles) is a fractal mesh obtained by
isosurface extraction. Some of these data sets are shown in
Figure 1. The source code for the Mandelbulb data set gen-
erator is freely available at https://bitbucket.org/
attila_afra/mandelbulbgen.

The construction statistics for the models are listed in Ta-
ble 6. We have designed our prototype implementation of the
out-of-core construction phase for simplicity instead of per-
formance. It is single-threaded, which means that it cannot
leverage multiple CPU cores.

The majority of the construction involves building sub-kd-
trees for in-core geometry chunks and sampling voxels. Both
of these tasks can be considerably sped up through the use of
multi-threaded algorithms. First, we can parallelize the kd-
tree building by building a single tree at a time on multiple
threads [CKL∗10] or building more than one tree simulta-
neously, each on a single thread. Secondly, we can sample
the voxels independently on parallel threads. However, the
out-of-core splitting of the geometry cannot be improved us-
ing multi-threading because the performance is bound by the
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Figure 8: The scaling of the ray casting performance with
the pixels of error. We have rendered the Lucy model with
varying error thresholds from the same viewpoint and mea-
sured the render time and working set size. The values shown
in this figure are relative to the maximum measured values.

hard disk I/O bandwidth. Fortunately, this operation consti-
tutes less than 5% of the total construction time.

The scaling of the ray casting performance with the num-
ber of triangles in the model is illustrated in Figure 7. No-
tice that without LOD, the render time increases logarithmi-
cally, as expected from employing a kd-tree as an accelera-
tion structure. However, if we enable the use of LOD vox-
els, the performance becomes nearly constant as soon as the
maximum projected triangle size drops below the pixel error
threshold.

Figure 8 shows that by increasing the pixels of error, the
render time and the size of the working set can be dramati-
cally reduced, at the expense of image quality. According to
our tests, a good trade-off between performance and quality
can be achieved with about 2–3 PoE. For example, rendering
with 3 PoE is typically about 50% faster than with 1 PoE, but
the subjective image quality is only slightly inferior.

Our ray tracing based rendering approach allows flexi-
ble shading and lighting, ranging from simple direct illu-
mination without shadows to global illumination. It can be
seen in Table 5 that even the most complex models from the
test suite can be rendered at interactive speeds with our ap-
proach. Thanks to the LOD mechanism, the required system
memory is also kept within acceptable bounds.

Compression not only reduces hard disk space require-
ments, but also improves I/O performance. For the Asian
Dragon model, which has a compression ratio of 70%, com-
pression increases the loading speed by 18%.

7.1. Comparisons

R-LODs: The most similar method to ours is that of Yoon
et al. [YLM06], which is also ray tracing based and uses
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(a) PoE = 0 (b) PoE = 3 (c) PoE = 32

Figure 9: Magnified renderings of the Lucy model at different LOD error thresholds.

the same LOD error metric for primary and shadow rays
as our algorithm. While in their approach the LOD primi-
tives are simple planes with one color value each, which are
called R-LODs, we have instead opted for voxels with vary-
ing amount of shading attribute sets. This way, we can better
approximate complex volumetric details and avoid holes in
the simplified versions of the model.

Another key difference is that their system does not load
the data asynchronously, thus, it provides less smooth visu-
alization than our method. Also, it was not designed to use
compression. However, they employ a more efficient cache-
oblivious data layout [YLPM05, YM06], which can lead to
faster rendering and loading. The two approaches could be
combined to obtain an even more powerful method.

Far Voxels: The approach introduced in [GM05] uses GPU
rasterization instead of ray tracing, but similarly to our
method, implements LOD with view-dependent voxels and
does asynchronous I/O. Rendering massive models with ras-
terization has two significant advantages compared to ray
tracing. First, for primary visibility, GPU rasterization with
LOD can be much faster (nevertheless, without LOD, ray
tracing is the clear winner for very large data sets). Secondly,
it does not require deep hierarchical acceleration structures,
which usually occupy huge amounts of space for massive
models. However, it is more limited in features than ray trac-
ing.

Although the Far Voxels method produces higher frame
rates than our approach, it uses very simple shading (direct

lighting without shadows). Another drawback is that it ren-
ders voxels with splatting instead of displaying them as 3D
primitives, which can be distracting if the voxels occupy
more than a few pixels. In exchange for higher computa-
tional and memory requirements, our ray tracing method of-
fers better voxel rendering quality and advanced shading like
true (not screen space) ambient occlusion and global illumi-
nation.

7.2. Limitations

Our method is able to handle a wide variety of model types
and to compute ray-traced effects, but it has certain limi-
tations. Most importantly, voxel-based LOD approximation
can cause visual artifacts. Voxels with only six shading at-
tribute samples may not provide high enough shading qual-
ity for some very complex parts of the model. A possible
remedy for this problem is to adaptively increase the num-
ber of samples per voxel. Moreover, thin or small objects are
difficult to represent with voxel hierarchies because the size
of the voxels can be much larger than the original geome-
try. The resulting aliasing artifacts are especially apparent at
lower levels of detail. These artifacts could be alleviated by
using semi-transparent voxels [WRG07].

Another limitation is that our LOD error metric does not
support non-planar reflection and refraction rays. Also, our
approach is practical only for models larger than the system
memory. For smaller models, the computation and storage
overhead induced by the out-of-core representation may out-
weigh the benefits.
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8. Conclusions and Future Work

We have presented a new efficient technique for interac-
tive out-of-core rendering of massive polygonal models. The
main contributions of this paper are:

• a compressed out-of-core model data structure for ray
tracing, which stores triangles and voxel-based hierarchi-
cal LODs;

• an efficient memory management method, which supports
prioritized asynchronous loading of details from disk;

• a LOD-based ray traversal algorithm suitable for primary,
shadow, diffuse, ambient occlusion, and planar reflection
rays.

Our approach can render hundreds of millions of triangles
at interactive speeds on a desktop PC, even with shadows,
ambient occlusion, and indirect illumination. The hierarchi-
cal LOD mechanism improves ray tracing speed and reduces
the amount of required memory. Data reading and decom-
pression are asynchronous to make it possible to inspect the
model even if not all of the necessary details are loaded yet.

In the future we would like to improve the voxel approxi-
mation quality and to develop a more general and fast LOD
error metric. We also plan to investigate possibilities for im-
proving the performance of incoherent ray shooting. An-
other interesting research avenue is the adaptation of the ren-
dering algorithm for GPUs.
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