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Abstract

Efficiently tracing randomly distributed rays is a highly challenging problem on wide-SIMD processors. The
MBVH (multi bounding volume hierarchy) is an acceleration structure specifically designed for incoherent ray
tracing on processors with explicit SIMD architectures like the CPU. Existing MBVH traversal methods for CPUs
target 4-wide SIMD architectures using the SSE instruction set. Recently, a new 8-wide SIMD instruction set
called AVX has been introduced as an extension to SSE. Adapting a data-parallel algorithm to AVX can lead to
significant, albeit not necessarily linear, speed improvements, but this is often not straightforward. In this paper
we present an improved MBVH ray traversal algorithm optimized for AVX, which outperforms the state-of-the-art
SSE-based method by up to 25%.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Monte Carlo ray tracing methods such as path tracing and
photon mapping shoot a very large number of random rays
with little or no coherence. Primary rays are usually highly
coherent, but most secondary rays are incoherent. Because
of this, the ray traversal algorithm must be optimized for in-
coherent rays in order to achieve optimal rendering perfor-
mance.

Regardless of the target processor architecture, either
CPU or GPU, the traversal algorithm should take advantage
of the SIMD facilities of the respective hardware as much as
possible. SIMD can provide a substantial speedup, but effi-
ciently leveraging it for tracing incoherent rays is a difficult
problem. The reason for this is that rays with low coher-
ence traverse very divergent paths in hierarchical accelera-
tion structures.

There are two main vectorization approaches for tracing
mostly incoherent rays. The first tries to extract hidden co-
herence by sorting the rays into coherent subsets and then
processing the resulting groups using SIMD operations. The
advantage of this method is that the SIMD utilization is high

as long as the size of the ray group is greater than or equal to
the SIMD width. Unfortunately, after multiple ray bounces,
this condition is true only for tree nodes close to the root,
thus the overall efficiency is low. On the other hand, the
second approach ignores any possible hidden coherence and
uses SIMD for individual rays instead of groups. This way,
SIMD utilization is completely independent of ray coher-
ence, but the performance does not scale linearly with the
SIMD width because the algorithmic efficiency decreases.

The most commonly used vector instruction set on the
x86 family of CPUs is SSE (Streaming SIMD Extensions),
which has a SIMD width of 4 lanes, where the size of a lane
is 32 bits. The successor of SSE, the AVX (Advanced Vec-
tor Extensions) instruction set provides a SIMD width of 8,
potentially doubling the speed of SSE. AVX was introduced
only recently, in 2011, with the Intel Sandy Bridge microar-
chitecture. Most ray tracing algorithms have been optimized
for SSE or similar 4-wide SIMD instruction sets, and thus
they may not scale well for wider SIMD.

In this paper, we propose an AVX-optimized single-ray
traversal algorithm for the MBVH (multi bounding volume
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(a) CONFERENCE ROOM (282K triangles) (b) FAIRY FOREST (174K triangles) (c) HAIRBALL (2.9M triangles)

(d) POWER PLANT (12.7M triangles) (e) SAN MIGUEL (10.5M triangles) (f) SIBENIK (80K triangles)

Figure 1: Scenes with varying complexity used for the performance evaluation of our ray traversal algorithm. These images
were rendered using simple diffuse path tracing.

hierarchy) acceleration structure. The MBVH enables high
SIMD utilization for single-ray traversal; therefore, it is a
good choice for incoherent ray tracing. Our approach offers
higher path tracing performance than previous SSE-based
methods for a wide variety of test cases.

2. Previous Work

Ray packet algorithms using the BVH (bounding volume
hierarchy) trace hundreds of rays (typically 256–1024) to-
gether in breadth-first fashion to exploit ray coherence. Such
methods try to reduce the number of intersection operations,
to minimize the memory bandwidth usage, and to improve
the speed of the computations using SIMD.

The ray packet traversal algorithm proposed by Wald et
al. [WBS07], sometimes called ranged traversal, works well
for primary rays, but performs poorly for secondary rays be-
cause it naively assumes high coherence and is sensitive to
the order of the rays in the packet. The packet that is traced
contains SIMD rays instead of individual rays. A SIMD ray
is a small 2×2 ray packet, which is processed using 4-wide
SIMD operations. If all rays are active, the SIMD utiliza-
tion is optimal, which means that 4 rays can be intersected
at the cost of one. However, the rays are not redistributed
by the traversal algorithm, and thus the SIMD utilization
quickly drops for incoherent rays. In each traversal step, the
method finds the first SIMD ray that intersects the current

tree node and assumes that all rays after that also intersect it.
This greatly reduces the number of ray/box intersections for
primary rays. The number of intersections is further reduced
by employing frustum culling.

A different approach is ray stream tracing [WGBK07,
GR08], which also traces a group of rays breadth-first, but
reorders the rays on-the-fly to maximize the SIMD effi-
ciency. The inactive rays are filtered out in each traversal
step using stream compaction. Because of this, all coherence
is extracted from the ray stream. If there is very little coher-
ence, the SIMD efficiency is low. A possible way to alleviate
this problem is to increase the size of the ray group. How-
ever, tracing a ray group that is too large results in inferior
performance because the group does not fit entirely into the
cache. Another drawback of this algorithm is that it requires
hardware gather/scatter support, which is not supported by
current CPU architectures.

Partition traversal [ORM08] is an improved version of
ranged traversal with exact ray filtering, similar to ray stream
tracing. However, it does not require special stream process-
ing instructions because it filters SIMD rays, and instead of
reordering them directly, reorders an array of ray IDs. Since
the SIMD rays are constant throughout the traversal, SIMD
utilization is low for incoherent rays.

A more robust method is adaptive ray packet reorder-
ing [BWB08], which reorders individual rays, but only when
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the SIMD efficiency drops below a certain threshold. The
rays are not reordered in every traversal step because it is
too costly. The algorithm extracts enough hidden coherence
to be superior to traditional single-ray tracing even for dif-
fuse path tracing with a few bounces.

Another category of ray traversal algorithms use multi-
branching hierarchical acceleration structures like QBVH
[DHK08] (Quad-BVH) and MBVH [WBB08,EG08,Ern11].
These methods completely ignore coherency by tracing sin-
gle rays but intersecting them with multiple bounding boxes
and triangles simultaneously. This has the advantage that
SIMD efficiency can be high regardless of the distribution
of rays, which makes MBVH traversal algorithms particu-
larly suitable for incoherent ray tracing. The BVH usually
has a branching factor equal to the SIMD width. To speed
up the intersections with triangles in the leaves, the triangles
are gathered into SIMD multi-triangles similar to the nodes.

Tracing individual rays has the disadvantage that memory
bandwidth is wasted because nodes visited by multiple rays
are loaded for each ray. The MBVH RS (ray stream) algo-
rithm [Tsa09] addresses this problem by combining MBVH
traversal with breadth-first ray stream traversal. It traces a
group of rays together, filtering out the inactive rays in ev-
ery traversal step. The rays in the stream are single rays and
are intersected with multi-nodes the same way as in single-
ray MBVH traversal approaches. However, the leaves of the
tree contain single triangles, which are intersected with small
SIMD ray packets constructed on-the-fly from the active
rays.

All the CPU ray tracing algorithms mentioned above were
designed before the introduction of the AVX instruction set.
Áfra [Áfr11] adapted the ranged and partition traversal al-
gorithms to AVX by doubling the size of the SIMD rays.
According to the measurements on a Sandy Bridge CPU,
AVX typically improves ray tracing speed for primary rays
by about 50% compared to SSE.

Most recently, Benthin et al. [BWW∗12] presented an
MBVH-based hybrid single/packet ray traversal method for
the Intel MIC (Many Integrated Core) architecture. Although
MIC has an even higher SIMD width than AVX (16 lanes),
the approach cannot be directly applied to AVX as there are
major differences between the two vector instruction sets.

3. Acceleration Structure

We use the MBVH acceleration structure for our ray tracing
method because of its high performance for arbitrarily dis-
tributed rays. In this section, we present the details of our
implementation of the MBVH.

The multi-nodes of an N-wide MBVH have up to N
children, and store information (e.g., bounding box) about
their children instead of themselves. We leverage the larger
SIMD width of AVX by using 8-wide MBVHs. Most MBVH

implementations have leaves referring to a single multi-
triangle. Our version does not have this restriction: the leaves
point to a list of multi-triangles.

3.1. Memory layout

There are two fundamental types of nodes in any BVH: inner
nodes and leaf nodes. The inner nodes refer to their child
nodes, whereas the leaf nodes refer to triangles. Both have
axis-aligned bounding boxes. An inner node of an MBVH
must store for each of its children a bounding box and a node
index. If a child is a leaf node, a reference to the first triangle
and the number of triangles are required in addition to the
bounding box. Instead of defining a separate leaf node type,
we keep all leaf information in the inner nodes in a compact
format. Therefore, there is only a single MBVH node type.

We encode the child node information with a 32-bit in-
teger value called node ID. For inner nodes, this is simply
the node index, which is a non-negative integer. If a node
is a leaf, the node ID encodes the index of the first multi-
triangle and the multi-triangle count. The sign bit is used to
distinguish between an inner and a leaf node ID. Leaf node
IDs have their sign bit set, thus they are negative values. The
lower 29 bits of the leaf node ID contain the triangle index,
and the remaining 2 bits contain the count. This representa-
tion is compact, can be quickly decoded, and simplifies the
traversal algorithm.

The multi-node first contains N bounding boxes in struc-
ture-of-arrays (SoA) form (i.e., a multi-box), which is nec-
essary for fast loading into SIMD registers. If there are less
than N children, the empty lanes are filled with invalid boxes.
Next, N node IDs are stored. Finally, the data structure is
padded to be aligned on a cache line boundary (i.e., 64
bytes).

template <int N>
struct Node {

float minBound[3][N];
float maxBound[3][N];
int ids[N];
int padding[N];

};

The node size for MBVH4 is 128 bytes, and for MBVH8
it is 256 bytes.

The multi-triangles, similar to the bounding boxes in the
nodes, have a fixed-size SoA layout to facilitate SIMD pro-
cessing. The triangle data is pregathered to maximize inter-
section performance at the cost of higher memory usage.

3.2. Construction

For the construction of the MBVH, we use the top-down
greedy splitting technique by Wald et al. [WBB08]. This is a
simple algorithm producing trees with high average branch-
ing factors. We split the nodes with the high-quality SBVH
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(Split Bounding Volume Hierarchy) algorithm [SFD09],
which uses spatial splits in addition to object splits. The
splitting costs are computed using the surface area heuris-
tic (SAH) [Hav00].

Initially, the root multi-node contains a single child node.
We build the multi-nodes by repeatedly splitting its child
nodes using simple binary splits. In each step, we first select
the child node with the largest surface area. Then, we split
this node and replace it with the resulting two nodes. We
stop splitting either if the number of children in the multi-
node is equal to the maximum branching factor N, or if there
are no more splitable nodes according to the SAH. We call
this type of splitting horizontal splitting. For this we use a
modified SAH cost function:

CH =
SA(BL)

SA(B)

⌈
TL

N

⌉
+

SA(BR)

SA(B)

⌈
TR

N

⌉
, (1)

where N is the SIMD width, SA(B) is the surface area of a
bounding box, TL and TR are the number triangles in the left
and right child, and BL, BR, and B are the bounding boxes of
the left child, right child, and parent node. Note that we have
omitted the traversal and triangle intersection costs because
horizontal splitting does not increase the number of traversal
steps.

After building a multi-node with the algorithm above,
we split its children to create child multi-nodes, which we
call vertical splitting. After splitting a node, we create a
new multi-node containing the two children. Then, we re-
cursively build the resulting multi-nodes, starting again with
horizontal splitting. The SAH cost function for vertical split-
ting is the following:

CV = KT +KI

(
SA(BL)

SA(B)

⌈
TL

N

⌉
+

SA(BR)

SA(B)

⌈
TR

N

⌉)
, (2)

where KT is the cost of a traversal step and KI is the cost of
a multi-triangle intersection. In our implementation, we set
both costs to 1.

For both splitting strategies, we stop splitting a node if the
SAH cost of splitting is greater than making the node a leaf.
We also stop if the number of triangles in the node is 1. An
alternative termination criterion would be to stop when there
are N or less triangles (the intersection cost is the same), but
this produces higher cost trees.

We limit the leaf size to 2N triangles. Thus, we always
split a node if the number of triangles exceeds this value.

4. Ray Traversal Algorithm

In our algorithm, we trace rays in batches (e.g., 256 rays), but
we trace them individually. This way, hidden coherence can-
not be exploited, but it is possible to implement superior or-
dered traversal, which improves performance independently
from coherence. The purpose of ordered traversal is to find
the closest intersection in less steps [SKHBS02]. Ordered

Ray type 1 2 3 4 5 6 7 8
primary 47.0 31.5 14.6 5.8 0.9 0.1 0.0 0.0
AO 56.5 25.5 12.6 4.0 1.1 0.2 0.0 0.0
1-bounce 54.7 25.4 13.4 4.7 1.4 0.3 0.0 0.0
2-bounce 54.5 25.7 13.4 4.8 1.4 0.3 0.0 0.0
8-bounce 53.2 26.1 13.9 5.0 1.4 0.3 0.1 0.0

Table 1: The distribution (in %) of the number of nodes hit
by rays in MBVH8 multi-nodes for primary, ambient occlu-
sion (AO), 1-bounce, 2-bounce, and 8-bounce diffuse rays.
Only multi-nodes with at least one child hit were considered.
The statistics were collected for the SAN MIGUEL scene, but
the results are very similar for other scenes. Note that for
more than 90% of the ray/multi-node intersections, only 1–3
nodes are hit.

BVH traversal cannot stop at the first valid intersection like
kd-tree traversal, but it still skips many subtrees.

When a ray encounters a multi-node during the traversal
loop, it is intersected with the N bounding boxes stored in
the node. This is done using the SIMD version of the stan-
dard slabs test [KK86], which computes a hit mask and the
intersection distances.

4.1. Ordered traversal

Similarly to the binary BVH traversal algorithm [WBS07],
we traverse the MBVH with depth-first ordered traversal,
which needs a traversal stack. We use the intersection dis-
tances provided by the box test algorithm to determine the
traversal order of the intersected child nodes. A straightfor-
ward way to achieve this is to do horizontal SIMD sorting
[FAN07], which unfortunately is quite costly and has subop-
timal SIMD efficiency. Because of its high cost, some previ-
ous single-ray MBVH traversal approaches employed faster
but less accurate ordering methods instead [EG08, DHK08].

If there are less than N intersected nodes, SIMD sorting
is even less efficient because it always sorts N values. We
have measured the distribution of the number of nodes hit
for different types of rays, which can be seen in Table 1. The
results show that for about 90% of the valid multi-node in-
tersections, only 1–3 children are hit. A single hit is the most
likely (40%–60%). Therefore, SIMD sorting almost always
works at a very low efficiency, especially for wide branching
factors.

We sort the nodes with a scalar method optimized for a
low number of hits, which was introduced in the Intel Em-
bree ray tracer for 4-wide MBVH ray traversal [Ern11]. This
is significantly faster than SIMD sorting. The main idea of
the method is to use specialized implementations of sorting
for the most frequent numbers of hits. We extend the original
algorithm to handle wider trees by implementing the follow-
ing cases: 1, 2, 3, 4, and 5–N hits.

We first convert the SIMD hit mask produced by the hit
test to an integer bit mask, where a 1 bit indicates a hit, and
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Scene Tris BVH Nodes
Node Tri
util util

CONFERENCE
282K

4-way 32K 92% 89%
ROOM 8-way 11K 80% 72%

FAIRY FOREST 174K
4-way 18K 94% 85%
8-way 6K 82% 69%

HAIRBALL 2.9M
4-way 671K 93% 94%
8-way 152K 87% 77%

POWER PLANT 12.7M
4-way 1.3M 93% 89%
8-way 425K 79% 77%

SAN MIGUEL 10.5M
4-way 999K 94% 86%
8-way 341K 78% 71%

SIBENIK 80K
4-way 10K 96% 82%
8-way 3K 86% 65%

Table 2: MBVH tree statistics for the test scenes: number of
triangles, branching factor of the MBVH, number of multi-
nodes, SIMD utilization of multi-nodes, and SIMD utiliza-
tion of multi-triangles.

its position corresponds to the index of the node. If this mask
is equal to zero, no nodes were hit. An important part of the
algorithm is to quickly get the indices of the hit nodes. This
can be done with two fast CPU instructions: bit scan forward
(BSF) and bit test and complement (BTC). BSF returns the
index of the first hit node (i.e., the position of the least sig-
nificant set bit). In order to compute the next index, we first
have to remove the previously found hit from the mask by
clearing the corresponding bit using BTC. We repeat these
two steps until the mask becomes zero.

The algorithm consists of 5 main steps, each correspond-
ing to the different sorting cases. In each step, we extract a
hit index from the mask; except the last step, where we may
extract a variable number of hits. If the mask becomes zero,
we sort all the identified nodes so far with a fast specialized
sorting technique. The ID of the node with the closest in-
tersection is put into a variable indicating the next node to
traverse. The remaining node IDs are pushed onto the tra-
versal stack. This avoids the overhead of pushing and almost
immediately popping the closest child. The traversal stack
also contains the intersection distances, which are used to
skip nodes beyond the closest hit.

The sorting cases are the following:

• 1 hit: The traversal continues with the hit node.
• 2 hits: The two intersection distances are compared. The

far node is pushed on the stack, and the traversal continues
with the near node.

• 3 hits: For 3 or more hits, the 3 hits found so far are
pushed on the stack without sorting. If there are exactly 3
hits, the nodes are sorted on the stack using a sorting net-
work [Bat68] consisting of 3 comparators. Next, the top
node is popped from the stack, and the traversal continues
with that node.

• 4 hits: The next node is pushed on the stack, and the 4

nodes are sorted using a sorting network with 5 compara-
tors.

• 5–N hits: All remaining nodes are pushed on the stack
in a loop. Then, the nodes are sorted using insertion sort,
which is efficient for very small data sets. This part of the
algorithm is the slowest, but it is rarely executed.

The following pseudocode implements the main part of
the ordered traversal algorithm:

// 1
int i = bsf(mask); mask = btc(mask, i);
if (mask == 0) {

nodeID = node->ids[i]; goto traverse;
}
// 2
int i2 = bsf(mask); mask = btc(mask, i2);
if (mask == 0) {

if (dist[i] < dist[i2]) {
stack.push(node->ids[i2], dist[i2]);
nodeID = node->ids[i];

} else {
stack.push(node->ids[i], dist[i]);
nodeID = node->ids[i2];

}
goto traverse;

}
// 3
stack.push(node->ids[i], dist[i]);
stack.push(node->ids[i2], dist[i2]);
i = bsf(mask); mask = btc(mask, i);
stack.push(node->ids[i], dist[i]);
if (mask == 0) {

stack.sortTop3();
nodeID = stack.pop(); goto traverse;

}
// 4
i = bsf(mask); mask = btc(mask, i);
stack.push(node->ids[i], dist[i]);
if (mask == 0) {
stack.sortTop4();
nodeID = stack.pop(); goto traverse;

}
// 5-N
int oldSize = stack.size();
do {
i = bsf(mask); mask = btc(mask, i);
stack.push(node->ids[i], dist[i]);

} while (mask != 0);
stack.sortTopN(stack.size() - oldSize + 4);
nodeID = stack.pop(); goto traverse;

In this code, nodeID is the ID of the current multi-node
that is being traversed, node is a pointer to this multi-node
in the memory, and dist is a SIMD array containing the
intersection distances for each child node.

If we do not need the closest intersection of the ray with
the geometry (e.g., for shadow and ambient occlusion rays),
we stop the traversal at the first valid intersection with a tri-
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Scene Ray type
Single traversal Stream traversal

MBVH4 MBVH8 Speedup MBVH4 MBVH8 Speedup
Mray/s Mray/s × Mray/s Mray/s ×

CONFERENCE ROOM

primary 32.3 39.5 1.22 36.0 31.0 0.86
AO 46.7 52.4 1.12 42.9 37.6 0.88
1-bounce 26.2 28.8 1.10 24.2 21.0 0.87
2-bounce 25.4 27.6 1.09 21.9 19.4 0.89
8-bounce 24.6 26.2 1.07 18.9 17.1 0.90

FAIRY FOREST

primary 27.1 32.8 1.21 29.9 26.8 0.90
AO 29.7 34.8 1.17 27.9 26.3 0.94
1-bounce 19.1 22.3 1.17 17.8 16.6 0.93
2-bounce 19.6 22.4 1.14 16.7 15.9 0.95
8-bounce 19.3 21.9 1.13 15.1 14.4 0.96

HAIRBALL

primary 16.8 20.6 1.23 19.9 18.1 0.91
AO 9.2 11.0 1.20 7.9 8.2 1.04
1-bounce 7.2 8.6 1.20 6.1 6.1 1.00
2-bounce 6.6 7.8 1.19 5.2 5.0 0.98
8-bounce 6.0 7.1 1.19 3.8 3.5 0.92

POWER PLANT

primary 40.0 44.0 1.10 40.4 33.2 0.82
AO 24.4 29.5 1.21 20.9 20.5 0.98
1-bounce 21.6 25.0 1.15 18.7 17.6 0.94
2-bounce 19.2 22.4 1.16 15.3 14.4 0.94
8-bounce 17.6 19.4 1.11 10.7 10.6 0.99

SAN MIGUEL

primary 13.6 16.7 1.23 15.3 14.2 0.93
AO 10.3 12.0 1.17 8.5 8.5 1.00
1-bounce 7.6 9.1 1.19 6.5 6.2 0.95
2-bounce 7.2 8.6 1.20 5.2 5.2 1.00
8-bounce 6.5 8.1 1.25 4.0 3.9 0.97

SIBENIK

primary 32.7 36.3 1.11 34.5 28.1 0.81
AO 36.6 41.1 1.12 33.6 31.3 0.93
1-bounce 19.7 21.6 1.10 16.5 15.2 0.92
2-bounce 18.8 20.4 1.09 14.0 13.1 0.94
8-bounce 17.8 18.1 1.02 11.1 10.6 0.96

Table 3: Ray tracing performance in million rays per second (Mray/s) for primary, ambient occlusion (AO), and diffuse rays
with up to 1, 2, and 8 bounces. The AO rays were long, and the traversal stopped at the first intersection. The diffuse rays were
generated using path tracing without Russian roulette, and the number of bounces indicate the maximum ray recursion depth.
We have compared two main algorithms: single-ray traversal and stream traversal (MBVH RS). The MBVH4 versions use SSE,
whereas the MBVH8 versions use AVX. Our single-ray MBVH8 traversal method delivers the highest performance for all test
cases. The timings do not include ray generation and shading. The speedups from AVX over SSE are also listed. The scenes
were rendered from the viewpoints shown in Figure 1 at 1024×768 resolution. The CPU used was an Intel Core i7-3770.

angle. Ordered traversal is not necessary in this case. Instead,
we push the nodes on the stack without any sorting.

5. Results

We compared our method with MBVH4 single-ray traversal
(the fastest algorithm used in Embree) and also with MBVH
RS traversal, which, unlike the other methods, is able to ex-
tract hidden coherence from rays. Our implementation of
MBVH RS uses multi-triangles instead of single triangles
in order to maximize SIMD utilization for highly incoherent

rays and wide SIMD units. We tested this method with both
4-way and 8-way branching MBVHs.

We measured the traversal performances for different
types of rays and scenes. We generated random diffuse rays
with 1-bounce, 2-bounce, and 8-bounce path tracing. Rus-
sian roulette was not used to terminate paths. We also tested
the methods with primary and ambient occlusion rays. The
ambient occlusion rays were quite long (one-eighth of the
scene size). The rays were traced in tiles of 16 × 16 pix-
els, and the rendering resolution was 1024× 768. The test
scenes were CONFERENCE ROOM, FAIRY FOREST, HAIR-
BALL, POWER PLANT, SAN MIGUEL, and SIBENIK (see
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Scene BVH Mray/s NT /ray NI /ray KB/ray

CONFERENCE 4-way 24.6 9.6 2.6 1.68
ROOM 8-way 26.2 5.9 2.4 2.35
FAIRY 4-way 19.3 13.2 3.7 2.34
FOREST 8-way 21.9 7.8 3.0 3.09

HAIRBALL
4-way 6.0 30.1 7.8 5.22
8-way 7.1 17.3 7.4 7.12

POWER 4-way 17.6 13.9 2.2 2.16
PLANT 8-way 19.4 8.8 1.8 2.89

SAN MIGUEL
4-way 6.5 24.2 5.0 3.97
8-way 8.1 14.7 4.2 5.24

SIBENIK
4-way 17.8 13.0 2.6 2.12
8-way 18.1 8.1 2.4 2.91

Table 4: Ray traversal statistics of the single-ray MBVH4
and MBVH8 algorithms for 8-bounce diffuse rays: mil-
lion rays per second (Mray/s), number of traversal steps
(NT /ray), number of multi-triangle intersections (NI /ray),
and amount of accessed scene data in kilobytes per ray
(KB/ray). Note that MBVH8 requires less traversal steps and
intersections, but more memory traffic.

Figure 1). The statistics for the constructed MBVH trees are
shown in Table 2.

Our benchmark system had an Intel Core i7-3770 pro-
cessor (Ivy Bridge, 4 cores, 8 threads, 3.4 GHz, 8 MB L3
cache) and 16 GB RAM (DDR3-1600, dual channel). The
algorithms were implemented in C++ with SIMD intrinsics
and were compiled for 64 bits with Intel C++ Compiler XE
13.0. We used SSE for the MBVH4 traversal methods and
AVX for the MBVH8 ones.

The performance results in million rays per second are
listed in Table 3. Our method, MBVH8 single traversal im-
plemented with AVX, yields a speedup of 2–25% relative
to MBVH4 for the tested ray types and scenes. To under-
stand where this improvement comes from (and why it is not
higher), we have collected some ray traversal statistics for
both algorithms in Table 4. We can observe that MBVH8
decreases the number of traversal steps and triangle inter-
sections by a factor of 1.52× on average. However, the ac-
tual speedup is lower than this value for two main reasons.
First, the traversal steps and intersections are slightly more
expensive than for MBVH4 because of the wider sorts and
reductions. Second, the amount of accessed scene data is in-
creased by about 1.35×, which results in more cache misses.

In contrast with single traversal, the AVX implementation
of MBVH RS is typically slightly slower than the SSE one.
This is primarily caused by the high cost of 8-wide SIMD
sorting.

Comparing the two MBVH4 traversal algorithms, we see
that MBVH RS is faster than the optimized single-ray ap-
proach for primary visibility, by at most 18%. Nevertheless,
single traversal is the most efficient for all other ray types,
including ambient occlusion rays, which are somewhat co-
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Figure 2: N-bounce diffuse path tracing performance (in-
cluding primary rays and shading) for the SAN MIGUEL

scene for the fastest three methods. MBVH8 single traver-
sal (our proposed method) outperforms both MBVH4 single
traversal (the Embree method) and MBVH4 stream traversal
(MBVH RS).

herent. The biggest difference is for rendering the POWER

PLANT scene (one of our most complex test scenes) with 8-
bounce path tracing, where single traversal is 64% faster for
diffuse rays.

Our MBVH8 traversal method is faster than MBVH RS
in all our tests, including primary ray benchmarks (see Fig-
ure 2). For 8-bounce diffuse rays, its performance is 38–
100% higher. Thus, according to these results, wide-SIMD
single-ray traversal is significantly more efficient for inco-
herent ray tracing than ray stream traversal on the latest CPU
architectures.

6. Conclusions and Future Work

In this paper we have presented an improved MBVH ray tra-
versal algorithm optimized for incoherent rays and the AVX
instruction set. Our method outperforms previous incoher-
ent ray traversal algorithms on the CPU for all tested scenes.
Also, we have demonstrated that AVX can provide a notable
performance boost even for highly random rays.

As future work, it would be interesting to combine our
approach with packet/stream traversal to attain optimal per-
formance for both coherent and incoherent ray distributions,
similarly to [BWW∗12]. We also plan to investigate incoher-
ent ray tracing on Intel Xeon Phi, a coprocessor based on the
MIC architecture.
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