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Abstract

Stackless traversal algorithms for ray tracing acceleration structures require significantly less storage per ray than
ordinary stack-based ones. This advantage is important for massively parallel rendering methods, where there are
many rays in flight. On SIMD architectures, a commonly used acceleration structure is the multi bounding volume
hierarchy (MBVH), which has multiple bounding boxes per node for improved parallelism. It scales to branching
factors higher than two, for which, however, only stack-based traversal methods have been proposed so far.
In this paper, we introduce a novel stackless traversal algorithm for MBVHs with up to 4-way branching. Our
approach replaces the stack with a small bitmask, supports dynamic ordered traversal, and has a low computation
overhead. We also present efficient implementation techniques for recent CPU, MIC (Intel Xeon Phi), and GPU
(NVIDIA Kepler) architectures.
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1. Introduction

Ray shooting is an elementary operation in ray tracing
that generally involves traversing a hierarchical acceleration
structure such as a kd-tree or bounding volume hierarchy
(BVH). Ray traversal algorithms can be divided into two
main categories: stack-based and stackless algorithms.

Using a stack for the traversal is typically the most
straightforward and efficient approach, especially if the
traversal order is dynamic. However, if many rays are traced
in parallel, the storage and bandwidth costs of maintain-
ing a full stack for each ray can be very high (i.e., about
256–1024 bytes of memory per ray). Notable examples for
this scenario are dynamic ray scheduling algorithms that
improve memory access coherence for random ray distri-
butions [PKGH97, NFLM07, AK10, KSS∗13]. For such ray
tracing methods, stackless traversal is better suited, particu-
larly if the number of resident rays per core is on the order
of thousands or more.

In recent years, the BVH has become the most popu-

lar acceleration structure thanks to its high performance
[SFD09, ALK12], low memory footprint, fast construction
[GPM11, KA13], and efficient dynamic updating [KIS∗12].
However, all prior work on stackless BVH traversal has fo-
cused on traditional binary BVHs, which are not always op-
timal on certain SIMD architectures (e.g., CPUs).

The multi bounding volume hierarchy (Multi-BVH or
MBVH) [WBB08, EG08, DHK08] is an N-ary tree that pro-
vides higher SIMD utilization for shooting incoherent rays.
It stores N bounding boxes or triangles per node, organized
into SIMD packets, which can be efficiently intersected in
parallel with a single ray. Although the MBVH was origi-
nally designed for high branching factors, the same princi-
ples can be applied to binary trees as well, improving data-
or instruction-level parallelism [Ern11, AL09].

In this paper, we propose a new efficient stackless ray
traversal algorithm for MBVHs that supports distance-based
ordered traversal without restarts. We add parent and sibling
pointers to the tree without necessarily increasing the mem-
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ory footprint, and we replace the regular stack with a com-
pact bitstack, an integer that fits into one or two machine reg-
isters. In the bitstack we store skip codes that indicate which
siblings of a node must be traversed.

Two variations of the algorithm are presented: one vari-
ation for 4-way branching MBVHs (MBVH4) and one for
binary BVHs having two child boxes per node. We call this
kind of binary tree MBVH2 in order to distinguish it from
classical BVHs that store a single box per node. Our method
can be extended to even higher branching factors (e.g., 8,
16), but this requires operations on larger bitmasks.

The MBVH4 is primarily used on CPUs with 4-wide or
8-wide SIMD, and also on the recent Intel MIC architec-
ture with 16-wide SIMD. MIC was introduced with Larrabee
[SCS∗08], and its latest implementation is the Xeon Phi co-
processor [Int13]. On the other hand, the MBVH2 is the pre-
ferred choice on current NVIDIA GPUs [AL09,ALK12]. We
have optimized our method (Section 6) and evaluated its per-
formance (Section 7) for all these hardware platforms.

2. Related Work

Most previous research on stackless ray traversal targeted
either of two widely used acceleration structures: the kd-tree
or the binary BVH.

2.1. Stackless kd-tree traversal

One approach for stackless kd-tree traversal is to store
neighbor-links, also called ropes, in the leaf nodes for all
six sides, which point to spatially adjacent nodes [MB90,
HBŽ98, PGSS07]. During traversal, these links are used to
directly jump to the next node (either inner or leaf node) that
must be traversed after exiting a leaf node. This eliminates
the need for a stack and also decreases the amount of tra-
versed inner nodes, but it has a substantial storage overhead.

Foley and Sugerman [FS05] introduced the kd-restart and
kd-backtrack algorithms, which are based on shortening the
ray from the start when a stack pop would be necessary. By
advancing the starting point of the ray to the leaf exit point,
the node will be skipped in subsequent traversal steps. Kd-
restart continues the search by simply restarting the traversal
from the root node using the shortened ray. To avoid restart-
ing after every leaf intersection, the kd-backtrack algorithm
adds parent pointers and bounding boxes to the tree. These
are used for ascending in the tree after processing a leaf.

Horn et al. [HSHH07] proposed two improved algorithms
based on kd-restart: kd-push-down and short-stack traver-
sal. Kd-push-down identifies the deepest node that fully con-
tains the valid intersection interval and then uses that node,
instead of the root, as the starting point for the traversal
restarts. Short-stack traversal reduces the amount of neces-
sary restarts by maintaining a small, fixed-size stack. The
traversal must be restarted only when the short-stack under-
flows.

2.2. Stackless BVH traversal

Most of the stackless kd-tree traversal techniques, with the
notable exception of short-stack traversal, cannot be directly
applied to BVHs because the nodes of a BVH may overlap
[Lai10].

Smits [Smi98] suggested the storage of a skip pointer in
each BVH node, which points to the next node to process
if the current node is missed by the ray. The downside of
this approach is that it can traverse the BVH only in a pre-
defined order, without taking into account ray directions or
node distances, which incurs a major performance penalty.
Torres et al. [TMG09] developed a GPU-optimized version
for coherent rays using ray packets.

The restart trail method by Laine [Lai10] enables traver-
sal restarts for BVHs (or other kinds of binary trees) by en-
coding which part of the tree has been visited so far in a 32-
or 64-bit trail. This value stores one bit of information per
tree level. When a restart is triggered, the trail guides the
downward traversal from the root to the next unprocessed
node. The advantage of this approach is that it supports or-
dered traversal according to the node distances, but due to
the restarts, it visits more than twice as many nodes as stack-
based traversal. This overhead can be alleviated, at the ex-
pense of increasing the traversal state size, by adding a short-
stack.

Hapala et al. [HDW∗11] add a parent pointer to each node
to backtrack in the tree instead of restarting from the root.
Their method determines the next node to traverse using
simple state logic, and it performs the same box and trian-
gle intersection tests as an equivalent stack-based version. It
needs to store only two bits of state in addition to the cur-
rent node pointer, which is significantly less than the size of
a trail or bitstack. However, it has to re-evaluate the traver-
sal order heuristic for all revisited nodes, which practically
restricts the heuristic to a simple ray direction based tech-
nique. Using the intersection distances to determine the near
and far children of a node would be too expensive because
both would have to be re-intersected. Such distance-based
sorting, though, would not necessarily always lead to fewer
traversal steps [Dam11].

Very recently, Barringer and Akenine-Möller [BAM13]
introduced a stackless algorithm for binary trees that effi-
ciently supports dynamic traversal order, based on the child
distances, without restarting. They described three variants
of the algorithm: two for implicit trees, and one for sparse
trees with parent pointers. The traversal state is maintained
using two integers: the current node’s index (or address) and
left-first descent level index. The level index is the relative
index of a node of an implicit tree with regard to the first
node on the same level. However, this tree is not the ac-
tual tree stored in memory but a virtual implicit version of
it with nodes sorted according to the dynamic traversal or-
der. Traversing this virtual tree in left-first order is equiva-
lent to traversing the original one in dynamic order. Thus, the
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(a) CONFERENCE (282K triangles) (b) CRYTEK SPONZA (262K triangles) (c) FAIRY (174K triangles)

(d) HAIRBALL (2.9M triangles) (e) POWER PLANT (12.7M triangles) (f) SAN MIGUEL (10.5M triangles)

Figure 1: Test scenes used for the performance measurements of the ray traversal algorithms. The images were rendered using
simple 8-bounce diffuse path tracing.

left-first level index of the current node can be used to effi-
ciently backtrack in the original tree, without re-intersecting
the nodes.

3. Algorithm Overview

Our goal is to traverse the same sequence of nodes as a stack-
based algorithm with a distance-based order heuristic, but
using only a few state variables. Also, we want to avoid in-
tersecting the same nodes multiple times.

A standard stack-based approach for N-way trees per-
forms the following operations for each visited inner node:
First, it intersects all N child bounding boxes, computing the
intersection distances. It then selects the nearest child as the
next node to traverse, and pushes the other (up to N − 1)
children to the stack. If all children were missed by the ray,
a node is popped from the stack, and the traversal continues
with that node.

For each visited leaf node, the primitives stored in the re-
spective node are intersected with the ray, and then the stack
is popped to get the next node.

Our algorithm replaces the stack pop with backtracking in
the tree from the current node. The purpose of this operation
is to find the next unprocessed node. This is a node whose
bounding box was hit by the ray while processing the par-
ent, but which has not been traversed yet. It is a sibling of

either the current node or one of its ancestors. To be able to
ascend in the tree, we add a parent pointer to each node. We
also store pointers to the siblings for accessing them without
taking a round trip to the parent. These additional links do
not necessarily increase the node size as the original layout
is often padded with unused values.

The backtracking is guided by a bitmask that encodes
which part of the tree needs to be traversed. It stores N− 1
bits for each visited tree level (except the root level), and is
updated similarly to a stack, using bitwise push and pop op-
erations. Hence, we call this special bitmask a bitstack. The
per-level values in the bitstack are skip codes. These indi-
cate which siblings of the most recently visited node on the
respective level have already been processed and thus must
be skipped.

In the following section, we describe in detail a simple
version of our traversal algorithm for binary trees, which we
later extend to support 4-way trees (Section 5).

4. MBVH2 Traversal

The binary variant of our stackless algorithm is shown in
Algorithm 1. We use two state variables: a pointer to the
current node (node) and the bitstack, a 32- or 64-bit integer
(bitstack). For binary trees, the skip codes pushed onto the
bitstack are 1-bit flags, which have the following semantics:
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Algorithm 1 Stackless MBVH2 traversal
SHOOTRAY(ray)

1 node← ROOT

2 bitstack← 0
3 loop
4 if ISINNER(node) then
5 intersect ray with children
6 if any child was hit then
7 bitstack← bitstack� 1
8 if one child was hit then
9 node← the child that was hit

10 else
11 node← the nearest child
12 bitstack← bitstack∨1
13 end if
14 continue
15 end if
16 else
17 // Leaf
18 intersect ray with primitives
19 shorten ray if closer intersection found
20 end if
21 // Backtrack
22 while bitstack∧1 = 0 do
23 if bitstack = 0 then
24 return // Terminate traversal
25 end if
26 node← PARENT(node)
27 bitstack← bitstack� 1
28 end while
29 node← SIBLING(node)
30 bitstack← bitstack⊕1
31 end loop

• 0: Skip the sibling of the current node; go to the parent.
• 1: Traverse the sibling of the current node.

The top of the bitstack is implicitly the least significant
bit. This means that when pushing or popping an item, all
the items in the stack must be shifted by one position, but
this can be efficiently implemented using a simple bitwise
shift. The initial value of the bitstack is 0, which is equiva-
lent to an empty stack because it indicates that there are no
nodes to process (i.e., all skip codes are 0). The advantage
of this representation is that the traversal can be terminated
earlier than returning to the root node, avoiding unnecessary
backtracking steps.

The main traversal loop begins at line 4 with checking
whether the current node is an inner node or a leaf node. If it
is an inner node, its two child bounding boxes are tested for
intersection with the ray (line 5).

If any of the children were hit, we first push a 0 bit to the
bitstack by shifting the bits to left (line 7). For a single hit,
we only have to set the current node to the intersected child.

The skip code of 0 that was just pushed ensures that the other
child subtree, which was missed by the ray, will not be later
traversed.

Lines 11–12 handle the less frequent case of two hits. We
compare the intersection distances and set the current node
to the near child. Furthermore, we change the skip code to
1 with a binary OR operation in order to enable the traversal
of the far child (line 12).

After processing the node, we continue the downward
traversal (line 14). If no children were hit, backtracking is
triggered to find the next node to process.

When we visit a leaf node (lines 18–19), we intersect the
primitives in the leaf and shorten the ray if we find an inter-
section closer than what we have previously recorded. Then,
we start backtracking in the tree.

The backtracking is performed in lines 22–30. In a loop,
we ascend in the tree until we find a non-zero skip code in
the bitstack, if there is any. The top stack item is extracted
using a binary AND (line 22). If the bitstack is equal to 0, the
entire traversal is terminated (lines 23–25). Otherwise, we
jump to the parent node, pop the bitstack, and continue the
search. After exiting the loop, we jump to the sibling of the
current node, which has not yet been traversed. Finally, we
flip the skip code at the top of the bitstack to 0 with a XOR,
in order to avoid revisiting the previous, already processed
node (line 30).

4.1. Comparison

A similar approach for sparse binary trees has been recently
proposed by Barringer and Akenine-Möller [BAM13], but
there are some important differences. Although the left-first
descent level index in their algorithm is functionally simi-
lar to our bitstack, the semantics of the bits in these values
are different. Our approach is slightly more efficient for two
reasons:

• Barringer terminates the traversal only when it returns to
the root node. In contrast, we exit the loop earlier if the
bitstack becomes zero, the testing of which has a low cost.

• In many cases, the bitstack or level index must be 64 bits
wide. On architectures with only limited native support
for 64-bit integers (e.g., current GPUs), most full-width
operations have a performance penalty. In Barringer’s al-
gorithm, one such operation is the incrementation of the
level index before starting to backtrack. Our approach re-
quires only a simple bit flip (at the end), which can be
executed at full speed.

For the test scenes in Figure 1, our algorithm is faster by
1–11% on the NVIDIA Kepler GK110 architecture (see Ta-
ble 3). Another advantage is that it scales naturally to higher
branching factors, as described in the next section.
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parent

children

sibling 0sibling 2 sibling 1

Figure 2: The stackless MBVH4 traversal algorithm re-
quires 8 pointers in each node: 4 child pointers, 3 sibling
pointers, and a parent pointer. The siblings are referenced in
circular order, starting from the first sibling after the node in
question.

5. MBVH4 Traversal

For binary trees, 1-bit skip codes are sufficient because
each node has only one sibling. In order to traverse 4-way
trees, we extend the skip codes to 3 bits, where each bit cor-
responds to a sibling of the respective node (see Figure 3a
for an example). These bits have the same semantics as 1-bit
skip codes: a 0 bit means that the sibling must be skipped,
whereas a 1 bit means that it must be traversed. The siblings
of a particular node are indexed circularly starting from the
next node in the sibling group, as shown in Figure 2. For ex-
ample, if the index of a node is 1, its siblings in ascending
order are nodes 2, 3, and 0. Nodes that have less than 4 chil-
dren are padded with invalid or empty node references, thus
every node has exactly 3 siblings.

The limitation of the skip codes is that they do not encode
the order in which the siblings should be processed. Like
for binary trees, we always descend into the nearest node
first, but we cannot traverse its siblings in front-to-back or-
der. This, however, has a quite small impact on performance
because in about 90% of the traversal steps only two or less
children are hit by the ray [BWW∗12]. For our scenes, the
performance hit caused by disabling full sorting in a refer-
ence stack-based approach [Ern11] is 2–9%.

The full traversal algorithm is given in Algorithm 2. For a
single intersected child (line 9), the skip code is 000. When
more than one child is hit, we first determine the index of
the nearest child (nearPos), which we select as the next node
(lines 12–13). Then, we compute the skip code for this node
using the SKIPCODE function (line 14). The implementa-
tion of this function can be seen on line 36. The skip code is
computed from the hit mask, a 4-bit mask indicating which
children are hit (mask), and the index of the selected child
(pos). The bit for the selected node is removed from the hit
mask, and the remaining 3 bits are rotated so that their po-
sitions match the indices of the corresponding siblings. For

Algorithm 2 Stackless MBVH4 traversal
SHOOTRAY(ray)

1 node← ROOT

2 bitstack← 0
3 loop
4 if ISINNER(node) then
5 intersect ray with children
6 hitMask← bitmask of child hits
7 if any child was hit then
8 bitstack← bitstack� 3
9 if one child was hit then

10 node← the child that was hit
11 else
12 nearPos← index of the nearest child
13 node← CHILD(node,nearPos)
14 skipCode← SKIPCODE(hitMask,nearPos)
15 bitstack← bitstack∨ skipCode
16 end if
17 continue
18 end if
19 else
20 // Leaf
21 intersect ray with primitives
22 shorten ray if closer intersection found
23 end if
24 // Backtrack
25 while (skipCode← bitstack∧7) = 0 do
26 if bitstack = 0 then
27 return // Terminate traversal
28 end if
29 node← PARENT(node)
30 bitstack← bitstack� 3
31 end while
32 siblingPos← BITSCAN(skipCode)
33 node← SIBLING(node,siblingPos)
34 bitstack← bitstack⊕ SKIPCODENEXT(skipCode)
35 end loop

SKIPCODE(mask,pos)
36 return ((mask� (pos+1))∨ (mask� (3−pos)))∧7

SKIPCODENEXT(code)
37 newCode← code� (BITSCAN(code)+1)
38 return newCode⊕ code

example, on Figure 3a the hit mask is 0111, and the index of
the nearest child is 1, thus, the resulting skip code is 101.

When backtracking is triggered, we first look for a node
that has a non-zero skip code by following the parent point-
ers (lines 25–31). If this was successful, we have to jump
to the next unprocessed sibling of this node. We determine
the index of this sibling by scanning the skip code for the
first set bit using the BITSCAN function (line 32). On most
processors, BITSCAN can be implemented with a single in-
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101

(a) 000 000 101

010

010

100

(b) 010 010 100

010

010

000

(c) 010 010 000

010

000

(d) 000 010 000

000

001

(e) 000 000 001

000

000

(f) 000 000 000

Figure 3: Example for stackless MBVH4 traversal. Only the steps where backtracking is triggered are depicted. Blue-colored
nodes represent unprocessed nodes, green nodes have been already processed, gray nodes have been culled (i.e., the ray does
not intersect them), and the red node is the current node. The invalid/empty nodes used for padding are not shown. The bold
arrows indicate the path from the root to the current node. The value of the bitstack can be seen below the tree in binary form.
The skip codes in the bitstack are also shown on the corresponding tree levels. The top of the bitstack is highlighted in bold.
The dotted arrows in (a) connect the bits in the skip code with the nodes which they refer to.

struction. Finally, we have to update the skip code at the
top of the bitstack. This is done in line 34 by XORing the
bitstack with a mask generated from the current skip code
with the SKIPCODENEXT function. In this function (lines
37–38), we compute the next skip code by shifting out the
trailing 0 bits and the next 1 bit. Then, we XOR this new
skip code with the old one to produce the mask.

An example traversal with this algorithm is illustrated in
Figure 3.

6. Implementation

In this section, we provide implementation details for three
different processor architectures: CPU (Intel Ivy Bridge),
MIC (Intel Knights Corner), and GPU (NVIDIA Kepler).

6.1. CPU

Our CPU implementation is based on the MBVH4 traversal
method introduced in the Intel Embree ray tracer [Ern11].
The simplified source code for the stackless traversal kernel
is listed in Appendix A.

The child bounding boxes in the nodes are stored in
structure-of-arrays (SoA) format to facilitate SIMD process-
ing. The size of the node data structure in the original stack-
based method is 112 bytes without any padding or 128 bytes
with cache line padding. To support stackless traversal, we
need to extend this layout with both parent and sibling point-
ers. These values can be fit inside the padding, thus, the total
node size is 128 bytes. We have to add the pointers to the

leaf nodes as well, which, depending on the chosen triangle
representation, may or may not increase their size.

Computing the skip codes during traversal is relatively
costly. We solve this problem by employing lookup tables
for both the SKIPCODE and SKIPCODENEXT functions,
which are small enough to easily fit into the L1 cache. The
SKIPCODE table is addressed with a 6-bit value composed
of the hit mask and the node index. Using one byte per entry,
the size of the table is 64 bytes (i.e., a single cache line). The
SKIPCODENEXT table can be even smaller as it contains
only 8 entries.

We use a 128-bit bitstack to be able to handle complex
scenes that require deep trees. This way, the maximum per-
mitted tree depth is 42. Since current CPUs do not have na-
tive 128-bit integer support, we implement the bitstack oper-
ations with 64-bit instructions. The most demanding opera-
tions are the bit shifts, which we implement using the special
double precision shift instructions SHLD and SHRD. This
approach is faster than using only regular shifts.

6.2. MIC

The Xeon Phi implementation is built upon the MBVH4
single-ray traversal algorithm by Benthin et al. [BWW∗12],
which has many similarities to the CPU algorithm (see Ap-
pendix B for the source code). Our stackless approach can
be applied to hybrid single/packet traversal as well, but we
opted for single traversal because of its simplicity and close-
to-optimal performance for highly incoherent rays.

The node bounding boxes are packed in an array-of-
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Scene Method
MBVH4-CPU MBVH4-MIC MBVH2-GPU

Intel Core i7-3770 Intel Xeon Phi SE10P NVIDIA Tesla K20c
Mray/s NB NT Mray/s NB NT Mray/s NB NT

CONFERENCE

stack 23.4 10.4 2.5 118.3 10.8 2.1 142.7 24.6 4.3
stackless 21.3 11.2 2.7 103.1 11.6 2.3 101.0 24.0 4.0
∆ −9% +8% +11% −13% +7% +10% −29% −3% −7%

CRYTEK SPONZA

stack 14.9 16.6 3.0 70.3 18.6 2.5 93.5 39.5 5.6
stackless 12.4 19.6 3.9 60.3 20.4 2.7 64.2 37.6 4.6
∆ −17% +18% +31% −14% +10% +9% −31% −5% −17%

FAIRY

stack 19.1 13.5 3.2 92.1 14.6 2.5 73.1 30.3 7.8
stackless 17.2 14.7 3.5 78.0 15.6 2.8 58.2 29.9 7.6
∆ −10% +9% +11% −15% +7% +11% −20% −1% −2%

HAIRBALL

stack 7.6 25.6 5.4 37.3 27.6 4.7 24.1 58.8 15.3
stackless 6.5 29.5 6.3 31.7 30.8 5.2 18.6 58.6 15.0
∆ −15% +15% +16% −15% +12% +11% −23% −0% −2%

POWER PLANT

stack 12.5 18.2 4.2 56.9 19.6 3.9 51.7 44.0 13.1
stackless 10.4 21.9 4.9 47.6 22.8 4.3 40.8 41.8 12.1
∆ −17% +20% +17% −16% +17% +9% −21% −5% −7%

SAN MIGUEL

stack 7.8 25.0 4.6 38.5 26.6 4.1 33.3 56.9 9.8
stackless 6.5 29.3 5.6 33.2 30.4 4.6 26.3 55.1 9.1
∆ −17% +17% +20% −14% +14% +11% −21% −3% −6%

Table 1: Performance measurements for 8-bounce diffuse path tracing (no Russian roulette) with trivial shading (no colors
or textures) on CPU, MIC, and GPU architectures. The scenes were rendered from the views depicted in Figure 1, and the
image resolution was 1024× 768 pixels. We have compared the state-of-the-art stack-based ray traversal methods [Ern11,
BWW∗12, ALK12] with our stackless methods in terms of: ray tracing speed (including shading) in million rays per second
(Mray/s), number of multi-box intersections (NB), and number of single- or multi-triangle intersections (NT ). Relative values
(stackless/stack−1) are also listed (∆).

structures (AoS) layout to better exploit the 16-wide SIMD
units. The SIMD vectors are divided into 4-wide lanes, each
containing a 3D vector. We insert the node pointers into the
unused slots in the SIMD vectors, so the extended node data
structure does not occupy more space than the basic one (128
bytes).

Because of the AoS layout, the ray-box intersection rou-
tine produces a sparse 16-bit hit mask. Every fourth bit is
a hit flag, whereas all the other bits are zero. Building a
SKIPCODE table for such a large mask or directly compact-
ing the mask would not be practical. Therefore, we also pro-
duce a 4-bit hit mask by permuting (with VPERMD) the
near and far distance vectors, and then comparing them. We
compute the lookup table index from this compact mask and
a 2-bit code that identifies the closest node. For two hits, this
code is either 0 or 1 (for the first or second hit, respectively),
and for more hits it is the node index. Thus, the table has 64
entries, just like the one used on the CPU.

6.3. GPU

We have optimized the GPU kernels for the NVIDIA Kepler
GK110 architecture [Nvi12]. Our baseline traversal method
is the stack-based speculative while-while kernel by Aila et
al. [AL09, ALK12], which traverses binary BVHs.

We implement the stackless MBVH2 traversal algorithm
using the following while-if-while loop organization:

while true
while node is inner
go to nearest child or break

if node is leaf
intersect primitives

while skip code is zero
go to parent or return

go to sibling

We do not postpone leaf intersections because it would be
inefficient in combination with backtracking and would also
increase the size of the traversal state. This way, the state
consists of only a node pointer and a 64-bit bitstack.

Our node data structure has the same size as the original
(64 bytes) because there is enough free space for the parent
and sibling pointers. When intersecting a node, we fetch the
node data (including triangles) through the texture cache, but
for backtracking we use regular memory loads.

The source code for the kernel can be seen in Appendix C.

7. Results

We evaluated the performance of our stackless ray traversal
algorithms and the corresponding stack-based algorithms us-
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Tree Max depth Method State size (B)

MBVH2 64
stack 264
stack+dist 520
stackless 12

MBVH4 42
stack 512
stack+dist 1016
stackless 20

Table 2: Traversal state sizes (in bytes) for different types of
BVHs and traversal methods. The listed methods are: simple
stack-based, stack-based with node distances (stack+dist),
and stackless traversal. All sizes include a 32-bit pointer to
the current node.

ing a simple but highly optimized diffuse path tracer on all
three processor architectures.

The different types of BVHs were constructed using
the same high-quality primitive partitioning techniques: we
used both object and spatial partitioning optimized with the
surface area heuristic (SAH), as proposed by Stich et al.
[SFD09]. The MBVH4 nodes were generated using the top-
down greedy splitting method by Wald et al. [WBB08]. The
MIC tree leaves were limited to 4 triangles (i.e., a single
multi-triangle), whereas the CPU and GPU ones were lim-
ited to 8 triangles. All traversal algorithms used variants of
the Möller-Trumbore ray-triangle intersection test [MT97].

The CPU used for the CPU benchmarks was an Intel Core
i7-3770 (Ivy Bridge, 4 cores, 8 threads, 3.4 GHz, 8 MB L3
cache) with 16 GB RAM (DDR3-1600, dual channel). The
code was compiled for 64-bits and AVX. Both the CPU and
MIC implementations were written in C++ with SIMD in-
trinsic functions and OpenMP, and they were compiled with
Intel C++ Compiler XE 13.1.

The MIC card was an Intel Xeon Phi SE10P coproces-
sor (Knights Corner, B1-stepping, 61 cores, 244 threads, 1.1
GHz, 8 GB GDDR5, ECC on) installed in a compute node of
the Stampede supercomputer at the Texas Advanced Com-
puting Center (TACC).

The GPU was an NVIDIA Tesla K20c (Kepler GK110,
13 multiprocessors, 2496 CUDA cores, 0.7 GHz, 5 GB
GDDR5, ECC on). The path tracer was implemented as a
traditional megakernel in CUDA 5.0.

The performance results, including the ray tracing speeds
and the number of box and triangle intersection tests, are
shown in Table 1. Our stackless algorithms, similarly to
previous methods, are somewhat slower than the reference
stack-based ones when used for ordinary ray tracing; how-
ever, they maintain about 22–51× smaller traversal states
(see Table 2). For special rendering methods that trace a very
large amount of rays in parallel, low memory footprint is es-
sential and could lead to a much higher overall performance.

Scene [BAM13] Our
∆

Mray/s Mray/s
CONFERENCE 91.2 101.0 +11%
CRYTEK SPONZA 60.8 64.2 +6%
FAIRY 53.5 58.2 +9%
HAIRBALL 18.0 18.6 +3%
POWER PLANT 39.2 40.8 +4%
SAN MIGUEL 26.0 26.3 +1%

Table 3: Performance of stackless MBVH2-GPU traversal
using [BAM13] versus our algorithm for 8-bounce diffuse
path tracing (also see Table 1). The GPU used was an
NVIDIA Tesla K20c.

For our test scenes, stackless traversal is slower by 9–17%
on the CPU, 13–16% on the MIC, and 20–31% on the GPU.
This is caused by the more complex traversal logic, more
irregular memory accesses, and on the CPU and MIC the
slightly higher number of box and triangle intersections. One
reason for the latter is that the stack-based versions store
node distances in the stack, and thus can skip previously
pushed nodes that no longer need to be traversed.

Also, on the CPU we always sort the pushed nodes by
hit distance, which further decreases the number of intersec-
tions by a small amount. Without these two minor optimiza-
tions, the stack-based algorithms would visit the same (in
case of MBVH2) or very similar sequence of nodes as the
respective stackless ones.

On the GPU, our stackless algorithm has slightly fewer
intersections than the stack-based version because it does not
postpone leaf nodes; however, this results in lower SIMD
efficiency. It outperforms the sparse traversal algorithm by
Barringer and Akenine-Möller [BAM13] for all test cases,
as can be seen in Table 3.

8. Conclusions and Future Work

We have presented a novel and efficient stackless ray traver-
sal algorithm for the MBVH acceleration structure. Two al-
gorithm variations have been discussed: one for 4-way trees
and one for binary trees. To our knowledge, this is the first
published stackless method for wide BVHs.

The results show that on current architectures our algo-
rithm performs competitively to stack-based approaches, but
it is not the fastest option for conventional ray tracers. How-
ever, the main advantage of our algorithm is that it has a
much smaller traversal state. Because of this, it can signifi-
cantly enhance the efficiency of advanced, massively parallel
in-core or out-of-core ray tracing schemes.

As future work, we would like to analyze the proposed
algorithm in the context of out-of-core ray tracing, where the
traversal of many rays must be suspended and later resumed.
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We also plan to investigate both stack-based and stackless
MBVH4 traversal on latest-generation GPU architectures.
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Appendix A: CPU Traversal Code (C++)

// Utility classes
// vfloat -> 4-wide SIMD vector of floats
// vmask -> 4-wide SIMD vector of bools

// Utility functions
// select(m, a, b) -> r[i] = m[i] ? a[i] : b[i]
// shl128, shr128 -> optimized 128-bit shifts

// MBVH4 traversal loop
static const uint8_t SKIPCODE[64] = {...};
static const uint64_t SKIPCODE_NEXT[8] = {...};

int nodeId = 0;
uint64_t bitstack = 0; // low
uint64_t bitstackH = 0; // high

for (; ;) {
// Inner node loop
while (isInner(nodeId)) {
const Node& node = getNode(nodeId);

// Box intersection
vfloat near, far;
intersectBoxes(ray, node, near, far);
vmask hitVecMask = (near <= far);
size_t hitMask = toIntMask(hitVecMask);
if (UNLIKELY(hitMask == 0)) goto backtrack;

// 1 hit
size_t hitPos = bitScan(hitMask);
int hitCount = bitCount(hitMask);
shl128(bitstack, bitstackH, 3);
if (LIKELY(hitCount == 1)) {

nodeId = getChildId(node, hitPos);
continue;

}

// 2 hits
if (LIKELY(hitCount == 2)) {

size_t hitPos2 = bitScan(
bitTestAndComplement(hitMask, hitPos));

if (near[hitPos] <= near[hitPos2]) {
bitstack |= SKIPCODE[hitMask*4 + hitPos];

nodeId = getChildId(node, hitPos);
} else {
bitstack |= SKIPCODE[hitMask*4 + hitPos2];
nodeId = getChildId(node, hitPos2);

}
continue;

}

// 3-4 hits
near = select(hitVecMask, near, INF);
hitPos = indexOfMin(near);
bitstack |= SKIPCODE[hitMask*4 + hitPos];
nodeId = getChildId(node, hitPos);

}

// Leaf node
...

// Backtrack
backtrack:
size_t skipCode;
while ((skipCode = (bitstack & 7)) == 0) {
if (UNLIKELY((bitstack | bitstackH) == 0))
return;

nodeId = getParentId(getNode(nodeId));
shr128(bitstack, bitstackH, 3);

}
size_t siblingPos = bitScan(skipCode);
nodeId = getSiblingId(
getNode(nodeId), siblingPos);

bitstack ^= SKIPCODE_NEXT[skipCode];
}

Appendix B: MIC Traversal Code (C++)
// Utility classes
// vfloat -> 16-wide SIMD vector of floats
// vint -> 16-wide SIMD vector of ints
// vmask -> 16-bit vector mask

// Utility functions
// select(m, a, b) -> r[i] = m[i] ? a[i] : b[i]
// cmpOp(m, a, b) -> r[i] = m[i] & (a[i] Op b[i])
// permute(a, p) -> r[i] = a[p[i]]
// reduceOpPerLane(a) -> reduce Op and broadcast
// within 4-wide lanes
// reduceOpCrossLane(a) -> reduce Op and broadcast
// across 4-wide lanes

vfloat origin, invDir, tMin, tMax; // ray

// MBVH4 traversal loop
static const uint8_t SKIPCODE[64] = {...};
static const uint64_t SKIPCODE_NEXT[8] = {...};

const vint HIT_PERM(0, 4, 8, 12); // 4x broadcasted

int nodeId = 0;
uint64_t bitstack = 0; // low
uint64_t bitstackH = 0; // high

for (; ;) {
// Inner node loop
while (isInner(nodeId)) {
const Node& node = getNode(nodeId);

// Box intersection
vfloat t0 = (node.lower - origin) * invDir;
vfloat t1 = (node.upper - origin) * invDir;
uint64_t bitstackShr61 = bitstack >> 61;
vfloat nXyz = select(0x7777, min(t0,t1), tMin);
vfloat fXyz = select(0x7777, max(t0,t1), tMax);
vfloat near = reduceMaxPerLane(nXyz);

c© 2013 The Author(s)
c© 2013 The Eurographics Association and John Wiley & Sons Ltd.



A. T. Áfra & L. Szirmay-Kalos / Stackless Multi-BVH Traversal for CPU, MIC and GPU Ray Tracing

vfloat far = reduceMinPerLane(fXyz);
vmask hitVecMask = cmpLe(0x8888, near, far);
vfloat nearHit = select(hitVecMask, near, INF);
if (UNLIKELY(none(hitVecMask))) goto backtrack;

// 1 hit
size_t hitMask = toIntMask(hitVecMask);
size_t hitPos = bitScan(hitMask); // i*4+3
int hitCount = bitCount(hitMask);
nodeId = getChildId(node, hitPos);
prefetchNodeL1(nodeId);
bitstack <<= 3;
bitstackH = (bitstackH << 3) | bitstackShr61;
if (LIKELY(hitCount == 1)) continue;

// 2 hits
vfloat nearPak = permute(near, HIT_PERM);
vfloat farPak = permute(far, HIT_PERM);
size_t hitMaskPak = toIntMask(

cmpLe(0xf, nearPak, farPak));
size_t hitPos2 = bitScan(hitMask, hitPos);
int nodeId2 = getChildId(node, hitPos2);
int hitDist = asInt(near)[hitPos];
if (LIKELY(hitCount == 2)) {

int hitDist2 = asInt(near)[hitPos2];
prefetchNodeL1(nodeId2);
if (hitDist <= hitDist2) {

bitstack |= SKIPCODE[hitMaskPak*4];
} else {

bitstack |= SKIPCODE[hitMaskPak*4 + 1];
nodeId = nodeId2;

}
continue;

}

// 3-4 hits
prefetchChildrenL2(node);
vmask minHitVecMask = cmpEq(hitVecMask,

nearHit, reduceMinCrossLane(nearHit));
hitPos = bitScan(toIntMask(minHitVecMask));
bitstack |=

SKIPCODE[hitMaskPak*4 + (hitPos >> 2)];
nodeId = getChildId(node, hitPos);
prefetchNodeL1(nodeId);

}

// Leaf node
...

// Backtrack
backtrack:

size_t skipCode;
while ((skipCode = (bitstack & 7)) == 0) {
if (UNLIKELY((bitstack | bitstackH) == 0))

return;
nodeId = getParentId(getNode(nodeId));
bitstack = (bitstack >> 3) | (bitstackH << 61);
bitstackH >>= 3;

}
size_t siblingPos = bitScan(skipCode);
nodeId = getSiblingId(
getNode(nodeId), siblingPos);

bitstack ^= SKIPCODE_NEXT[skipCode];
}

Appendix C: GPU Traversal Code (CUDA)
// MBVH2 traversal loop
int nodeId = 0;
uint64_t bitstack = 0;
int parentId, siblingId; // cached node links

for (; ;) {

// Inner node loop
while (isInner(nodeId)) {
// Load node through texture cache
// node links -> nid
// node bounds -> n0xy, n1xy, nz
int4 nid = __ldg(( int4*)bvh + nodeId);
float4 n0xy = __ldg((float4*)bvh + nodeId + 1);
float4 n1xy = __ldg((float4*)bvh + nodeId + 2);
float4 nz = __ldg((float4*)bvh + nodeId + 3);
parentId = nid.x;
siblingId = nid.y;

// Box intersection
float near0, far0, near1, far1;
intersectBoxes(ray, n0xy, n1xy, nz,
near0, far0, near1, far1);

bool hit0 = (far0 >= near0);
bool hit1 = (far1 >= near1);
if (!hit0 && !hit1) break;

bitstack <<= 1;
if (hit0 && hit1) {

nodeId = (near1 < near0) ? nid.w : nid.z;
bitstack |= 1;

} else {
nodeId = hit0 ? nid.z : nid.w;

}
}

// Leaf node
if (!isInner(nodeId)) {

...
}

// Backtrack
while ((bitstack & 1) == 0) {
if (bitstack == 0) return;
nodeId = parentId;
int4 nid = *((int4*)bvh + nodeId);
parentId = nid.x;
siblingId = nid.y;
bitstack >>= 1;

}
nodeId = siblingId;
bitstack ^= 1;

}
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