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Writing a fast ray tracer is difficult 
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 Need to multi-thread: easy for rendering but difficult for hierarchy 
construction 

 Need to vectorize: efficient use of SIMD units, different ISAs (SSE, AVX, AVX2, 
AVX-512) 

 Need deep domain knowledge: many different data structures (kd-trees, 
octrees, grids, BVH2, BVH4, ..., hybrid structures) and algorithms (single rays, 
packets, large packets, stream tracing, ...) to choose 

 Need to support different CPUs: different ISAs/CPU types favor different data 
structures, data layouts, and algorithms 
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Embree ray tracing kernels 

4 

 Provides highly optimized and scalable ray tracing kernels 

 Acceleration structure build and ray traversal 

 Targets professional rendering applications 

 Highest ray tracing performance on CPUs 

 1.5–6× speedup reported by users 

 Support for latest CPUs 

 Intel® Xeon Phi™ Processor (codenamed Knights Landing) 

 API for easy integration into applications 

 Free and open source under Apache 2.0 license 

 http://embree.github.com 
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Embree features 
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 Find closest hit, any hit 

 rtcIntersect, rtcOccluded 

 Single rays, ray packets (4, 8, 16), ray streams (N) 

 High-quality and high-performance BVH builders 

 Intel® SPMD Program Compiler (ISPC) support 

 Triangles, quads, subdivs, instances, hair, linear motion blur 

 Extensible 

 User defined geometry, intersection filter functions, open source 

 Support for Intel® Threading Building Blocks (TBB) 
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Embree system overview 

 Embree API (C++ and ISPC) 

 Ray Tracing Kernel Selection 

Acceleration 
Structures 

 
bvh4.triangle4 
bvh8.triangle4 
bvh4.quad4v 

… 
 

Builders 
 

SAH Builder 
Spatial Split Builder 

Morton Builder 
BVH Refitter 

Traversal 
 

Single Ray 
Packet/Hybrid 

Ray Stream 

 Common Vector and SIMD Library  
(Vec3f, Vec3fa, vfloat4, vfloat8, vfloat16, …, SSE2, SSE4.1, AVX, AVX2, AVX-512) 

Intersection 
 

Möller-Trumbore 
Plücker 

Bézier Curve 
Line Segment 
Triangle Grid 

Subdiv Engine 
 

B-Spline Patch 
Gregory Patch 

Tessellation Cache 
Displ. Mapping 

6 



© 2016 Intel Corporation 

Embree API 
How to use Embree? 
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Scene 

 Scene is a container for set of 
geometries 

 Scene flags passed at creation time 

 Static scene 

 Dynamic scene 

 etc. 

 Scene geometry changes have to get 
commited (rtcCommit), which 
triggers BVH build 
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// include Embree headers 
#include <embree2/rtcore.h> 
 
int main()  
{ 
  // initialize at application startup 
  rtcInit(); 
 
  // create scene 
  RTCScene scene = rtcNewScene 

(RTC_SCENE_STATIC, RTC_INTERSECT1); 
 

  // add geometries 
  ... later slide ... 
 
  // commit changes 
  rtcCommit(scene); 
 
  // trace rays 
  ... later slide ... 
 
  // cleanup at application exit 
  rtcExit(); 
} 
 



© 2016 Intel Corporation 

Triangle mesh 

 Contains vertex and index buffers 

 Number of triangles and vertices set 
at creation time 

 Linear motion blur supported 

 2 vertex buffers 
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// application vertex and index layout 
struct Vertex { float x, y, z, s, t; };  
struct Triangle { int materialID, v0, v1, v2; };  
 
// add mesh to scene 
unsigned int geomID = rtcNewTriangleMesh 
  (scene, numTriangles, numVertices, 1); 

 
// set data buffers 
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER, 
  vertexPtr, 0, sizeof(Vertex)); 
rtcSetBuffer(scene, geomID, RTC_INDEX_BUFFER, 
  indexPtr, 4, sizeof(Triangle)); 
 
// add more geometries 
... 
 
// commit changes 
rtcCommit(scene); 
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Rendering (ISPC) 
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// loop over all screen pixels 
foreach (y=0 ... screenHeight-1, x=0 ... screenWidth-1) { 
 
 // create and trace primary ray 

 RTCRay ray = make_Ray(p, normalize(x*vx + y*vy + vz), eps, inf); 

 rtcIntersect(scene, ray); 

 

 // environment shading 

 if (ray.geomID == RTC_INVALID_GEOMETRY_ID) { 

  pixels[y*screenWidth+x] = make_Vec3f(0.0f); continue; 

 } 

 

 // calculate hard shadows 

 RTCRay shadow = make_Ray(ray.org+ray.tfar*ray.dir, neg(lightDir), eps, inf);  

 rtcOccluded(scene, shadow); 

 

 if (shadow.geomID == RTC_INVALID_GEOMETRY_ID) 

   pixels[y*width+x] = colors[ray.primID]*(0.5f + clamp(-dot(lightDir, normalize(ray.Ng)), 0.0f, 1.0f)); 
     else 
   pixels[y*width+x] = colors[ray.primID]*0.5f; 
} 
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New/Advanced Features 
Since the initial publication of Embree [Wald et al. 2014] 
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Quad meshes (Embree 2.8) 
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 Most 3D modeling packages produce quad meshes 

 No need to convert them to triangles anymore! 

 rtcNewQuadMesh 

 

 Up to 2× lower memory usage 

 Faster BVH building 

 Higher ray intersection throughput 
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Subdivision surfaces (Embree 2.4) 
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 Catmull-Clark subdivision surfaces 

 Compatible with OpenSubdiv 3.0 

 Displacement mapping 

 

 Tessellation cache [Benthin et al. 2015] 

 Low memory usage 

 Real-time rendering performance 
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Hair 

14 

 Three hair geometry types: 

 Cubic Bézier hair (Embree 2.3) 

 Line segment (Embree 2.8) 

 Cubic Bézier curve (Embree 2.10) 

 Sweep surface of a circle along a Bézier curve 

 

 High performance through use of 
oriented bounding boxes [Woop et al. 2014] 

 Low memory consumption through 
direct ray/curve intersection 

p0/r0 p1/r1 

p2/r2 

p3/r3 
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User defined geometries 
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 Enables implementing custom primitives not provided by Embree 

 e.g., point, disk 

 

 User provides: 

 Bounding function 

 Intersect and occluded functions 

 

 Linear motion blur support (Embree 2.8) 
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Ray streams (Embree 2.9) 

16 

 Intersect many rays together 

 e.g., 1K-4K 

 rtcIntersect1M, rtcIntersectNM, rtcIntersectNp 

 Enables better coherence extraction than packets 

 Improves both traversal and shading [Áfra et al. 2016] performance 

 Novel stream traversal algorithm 

 Based on hiding memory access latency 

 Improves performance by 10-30% depending on coherence 
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Embree 2.10.0 Performance 
Ray tracing performance 
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Test setup 
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 Path tracer with complex materials and shaders (including procedural) 

 Ray stream tracing with local shading coherence extraction [Áfra et al. 2016] 

 Hardware: 

 Dual-socket Intel® Xeon® E5-2699 v3 (Haswell, 2×18 cores, 2.3 GHz, AVX2), 64 GB DDR4 

 Intel® Xeon Phi™ 7210 (Knights Landing, 64 cores, 1.3 GHz, AVX-512), 96 GB DDR4 

Mazda / 5.7M triangles Villa / 37.7M triangles Conference / 0.3M triangles 
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Ray tracing performance (including shading) 
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2 × Intel Xeon E5-2699 v3

2 × 18 cores, 2.3 GHz, AVX2

Intel Xeon Phi 7210

64 cores, 1.3 GHz, AVX-512
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Q&A 
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Visit the Intel booth for a live Embree demo running on Intel® Xeon Phi™!  




