
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

Embree Ray Tracing Kernels:
Overview and New Features
Attila Áfra, Ingo Wald, Carsten Benthin, Sven Woop

Intel Corporation

http://www.intel.com/sites/corporate/tradmarx.htm

© 2016 Intel Corporation

Legal Disclaimer and Optimization Notice

2

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks of Intel Corporation in
the U.S. and other countries.

 Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice.

Notice revision #20110804

© 2016 Intel Corporation

Writing a fast ray tracer is difficult

3

 Need to multi-thread: easy for rendering but difficult for hierarchy
construction

 Need to vectorize: efficient use of SIMD units, different ISAs (SSE, AVX, AVX2,
AVX-512)

 Need deep domain knowledge: many different data structures (kd-trees,
octrees, grids, BVH2, BVH4, ..., hybrid structures) and algorithms (single rays,
packets, large packets, stream tracing, ...) to choose

 Need to support different CPUs: different ISAs/CPU types favor different data
structures, data layouts, and algorithms

© 2016 Intel Corporation

Embree ray tracing kernels

4

 Provides highly optimized and scalable ray tracing kernels

 Acceleration structure build and ray traversal

 Targets professional rendering applications

 Highest ray tracing performance on CPUs

 1.5–6× speedup reported by users

 Support for latest CPUs

 Intel® Xeon Phi™ Processor (codenamed Knights Landing)

 API for easy integration into applications

 Free and open source under Apache 2.0 license

 http://embree.github.com

 4

© 2016 Intel Corporation

Embree features

5

 Find closest hit, any hit

 rtcIntersect, rtcOccluded

 Single rays, ray packets (4, 8, 16), ray streams (N)

 High-quality and high-performance BVH builders

 Intel® SPMD Program Compiler (ISPC) support

 Triangles, quads, subdivs, instances, hair, linear motion blur

 Extensible

 User defined geometry, intersection filter functions, open source

 Support for Intel® Threading Building Blocks (TBB)

© 2016 Intel Corporation

Embree system overview

 Embree API (C++ and ISPC)

 Ray Tracing Kernel Selection

Acceleration
Structures

bvh4.triangle4
bvh8.triangle4
bvh4.quad4v

…

Builders

SAH Builder
Spatial Split Builder

Morton Builder
BVH Refitter

Traversal

Single Ray
Packet/Hybrid

Ray Stream

 Common Vector and SIMD Library
(Vec3f, Vec3fa, vfloat4, vfloat8, vfloat16, …, SSE2, SSE4.1, AVX, AVX2, AVX-512)

Intersection

Möller-Trumbore
Plücker

Bézier Curve
Line Segment
Triangle Grid

Subdiv Engine

B-Spline Patch
Gregory Patch

Tessellation Cache
Displ. Mapping

6

© 2016 Intel Corporation

Embree API
How to use Embree?

7

© 2016 Intel Corporation

Scene

 Scene is a container for set of
geometries

 Scene flags passed at creation time

 Static scene

 Dynamic scene

 etc.

 Scene geometry changes have to get
commited (rtcCommit), which
triggers BVH build

8

// include Embree headers
#include <embree2/rtcore.h>

int main()
{
 // initialize at application startup
 rtcInit();

 // create scene
 RTCScene scene = rtcNewScene

(RTC_SCENE_STATIC, RTC_INTERSECT1);

 // add geometries
 ... later slide ...

 // commit changes
 rtcCommit(scene);

 // trace rays
 ... later slide ...

 // cleanup at application exit
 rtcExit();
}

© 2016 Intel Corporation

Triangle mesh

 Contains vertex and index buffers

 Number of triangles and vertices set
at creation time

 Linear motion blur supported

 2 vertex buffers

9

// application vertex and index layout
struct Vertex { float x, y, z, s, t; };
struct Triangle { int materialID, v0, v1, v2; };

// add mesh to scene
unsigned int geomID = rtcNewTriangleMesh
 (scene, numTriangles, numVertices, 1);

// set data buffers
rtcSetBuffer(scene, geomID, RTC_VERTEX_BUFFER,
 vertexPtr, 0, sizeof(Vertex));
rtcSetBuffer(scene, geomID, RTC_INDEX_BUFFER,
 indexPtr, 4, sizeof(Triangle));

// add more geometries
...

// commit changes
rtcCommit(scene);

© 2016 Intel Corporation

Rendering (ISPC)

10

// loop over all screen pixels
foreach (y=0 ... screenHeight-1, x=0 ... screenWidth-1) {

 // create and trace primary ray

 RTCRay ray = make_Ray(p, normalize(x*vx + y*vy + vz), eps, inf);

 rtcIntersect(scene, ray);

 // environment shading

 if (ray.geomID == RTC_INVALID_GEOMETRY_ID) {

 pixels[y*screenWidth+x] = make_Vec3f(0.0f); continue;

 }

 // calculate hard shadows

 RTCRay shadow = make_Ray(ray.org+ray.tfar*ray.dir, neg(lightDir), eps, inf);

 rtcOccluded(scene, shadow);

 if (shadow.geomID == RTC_INVALID_GEOMETRY_ID)

 pixels[y*width+x] = colors[ray.primID]*(0.5f + clamp(-dot(lightDir, normalize(ray.Ng)), 0.0f, 1.0f));
 else
 pixels[y*width+x] = colors[ray.primID]*0.5f;
}

© 2016 Intel Corporation

New/Advanced Features
Since the initial publication of Embree [Wald et al. 2014]

11

© 2016 Intel Corporation

Quad meshes (Embree 2.8)

12

 Most 3D modeling packages produce quad meshes

 No need to convert them to triangles anymore!

 rtcNewQuadMesh

 Up to 2× lower memory usage

 Faster BVH building

 Higher ray intersection throughput

© 2016 Intel Corporation

Subdivision surfaces (Embree 2.4)

13

 Catmull-Clark subdivision surfaces

 Compatible with OpenSubdiv 3.0

 Displacement mapping

 Tessellation cache [Benthin et al. 2015]

 Low memory usage

 Real-time rendering performance

© 2016 Intel Corporation

Hair

14

 Three hair geometry types:

 Cubic Bézier hair (Embree 2.3)

 Line segment (Embree 2.8)

 Cubic Bézier curve (Embree 2.10)

 Sweep surface of a circle along a Bézier curve

 High performance through use of
oriented bounding boxes [Woop et al. 2014]

 Low memory consumption through
direct ray/curve intersection

p0/r0 p1/r1

p2/r2

p3/r3

© 2016 Intel Corporation

User defined geometries

15

 Enables implementing custom primitives not provided by Embree

 e.g., point, disk

 User provides:

 Bounding function

 Intersect and occluded functions

 Linear motion blur support (Embree 2.8)

© 2016 Intel Corporation

Ray streams (Embree 2.9)

16

 Intersect many rays together

 e.g., 1K-4K

 rtcIntersect1M, rtcIntersectNM, rtcIntersectNp

 Enables better coherence extraction than packets

 Improves both traversal and shading [Áfra et al. 2016] performance

 Novel stream traversal algorithm

 Based on hiding memory access latency

 Improves performance by 10-30% depending on coherence

© 2016 Intel Corporation

Embree 2.10.0 Performance
Ray tracing performance

17

© 2016 Intel Corporation

Test setup

18

 Path tracer with complex materials and shaders (including procedural)

 Ray stream tracing with local shading coherence extraction [Áfra et al. 2016]

 Hardware:

 Dual-socket Intel® Xeon® E5-2699 v3 (Haswell, 2×18 cores, 2.3 GHz, AVX2), 64 GB DDR4

 Intel® Xeon Phi™ 7210 (Knights Landing, 64 cores, 1.3 GHz, AVX-512), 96 GB DDR4

Mazda / 5.7M triangles Villa / 37.7M triangles Conference / 0.3M triangles

© 2016 Intel Corporation

Ray tracing performance (including shading)

19

0

10

20

30

40

50

60

70

80

90

100

Mazda Villa Conference

M
il

li
o

n
 r

a
y

s
/

se
co

n
d

2 × Intel Xeon E5-2699 v3

2 × 18 cores, 2.3 GHz, AVX2

Intel Xeon Phi 7210

64 cores, 1.3 GHz, AVX-512

© 2016 Intel Corporation

Q&A

20

Visit the Intel booth for a live Embree demo running on Intel® Xeon Phi™!

