
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

Local Shading Coherence Extraction for
SIMD-Efficient Path Tracing on CPUs
Attila Áfra, Carsten Benthin, Ingo Wald, Jacob Munkberg

Intel Corporation

http://www.intel.com/sites/corporate/tradmarx.htm

© 2016 Intel Corporation

Legal Disclaimer and Optimization Notice

2

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks of Intel Corporation in
the U.S. and other countries.

 Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice.

Notice revision #20110804

© 2016 Intel Corporation

Path tracing

 Standard method for production rendering

 Main steps:

 Ray traversal

 Shading

 Usually more than half
of the rendering time

3

© 2016 Intel Corporation

Path tracing

4

 Single-ray tracing

 SIMD single-ray traversal

 Scalar shading

 Packet tracing

 SIMD single-ray traversal (or packet traversal)

 SoA-based SIMD packet shading

© 2016 Intel Corporation

Path tracing

 Random rays  incoherent traversal and shading 

 Low utilization of vector units

 The wide (8-32) vector units of modern CPUs and GPUs are wasted

 Incoherent memory accesses

5

© 2016 Intel Corporation

Incoherent shading

6

 SIMD divergence

 Many different shaders are evaluated within a SIMD batch

 Low SIMD utilization

 Incoherent texture access

 Non-cached reads form memory, disk, or network

0 1 2 3 4 5 6 7

0 4

1 2 6

3 7

5

© 2016 Intel Corporation

Coherence extraction

7

 Performance can be improved by extracting coherence

 Find batches of similar rays and process them together

 Most previous research focused on traversal

 Stream shading

 Trace streams of rays and sort them on various criteria (e.g., material)

 Previous methods operate on a single large, global stream (millions of rays):

 Wavefront path tracing on GPUs [Laine et al. 2013]

 Sorted deferred shading for production path tracing [Eisenacher et al. 2013]

© 2016 Intel Corporation

Our algorithm

8

 Traces and sorts small local streams independently on each CPU thread

 2K-8K rays per stream

 Enables efficient SIMD shading with low overhead

 Why local?

 Has much lower overhead than global!

 Cache-friendly: the streams fit into the CPU’s last-level cache (LLC)

 Avoids expensive cross-core communication

 Very fast (and simple) ray sorting

 Sufficient for high (> 90%) SIMD utilization

© 2016 Intel Corporation

Path tracing integrator

9

 Unidirectional path tracer with next event estimation

 Cast a ray from the camera

 Evaluate the material at the hit point

 Material ID

 Material shader which constructs a BSDF

 Cast a shadow ray toward a light source

 Cast an extension ray and repeat

© 2016 Intel Corporation

Stream tracing

10

 Two ray streams:

 Extension ray stream

 Shadow ray stream

 SoA memory layout

 SIMD-friendly

 Compact

 No gaps (inactive rays)

 Algorithm consists of stages

 Each stage involves a stream iteration

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

Stream tracing

11

 Ray generation

 Generate primary rays from an image tile

 e.g., 16x16 pixels, 8 samples per pixel

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

Stream tracing

12

 Ray generation

 Generate primary rays from an image tile

 e.g., 16x16 pixels, 8 samples per pixel

 Ray intersection

 Intersect all extension rays in the stream

 Single-ray traversal

 Stream traversal

 DRST [Barringer & Akenine-Möller 2014]

 ORST [Fuetterling et al. 2015]

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

Stream tracing

13

 Sorting

 Sort ray IDs by material ID

 Counting sort  fast!

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

Stream tracing

14

 Sorting

 Sort ray IDs by material ID

 Counting sort  fast!

 Material evaluation

 Iterate over the sorted ray IDs

 Execute shaders for coherent SIMD batches

 Generate extension and shadow rays

 Append to new streams using pack-stores

 Filter out terminated paths

 Double buffering

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

Stream tracing

15

 Shadow ray intersection

 Test all shadow rays for occlusion

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

Stream tracing

16

 Shadow ray intersection

 Test all shadow rays for occlusion

 Accumulation

 For unoccluded shadow rays, add direct light

 For terminated paths, accumulate to image

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

Stream tracing

17

 Shadow ray intersection

 Test all shadow rays for occlusion

 Accumulation

 For unoccluded shadow rays, add direct light

 For terminated paths, accumulate to image

 Path regeneration (optional)

 Append new primary rays to the stream

 Replace terminated paths

Sorting

Ray generation

Ray intersection

Accumulation

Shadow ray intersection

Material evaluation

© 2016 Intel Corporation

SIMD stream shading example

18

Sorted ray ID array:

Input array:

Output array: 0 4 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14
D

o
u

b
le

 b
u

ffe
rs

© 2016 Intel Corporation

SIMD stream shading example

19

Input array:

Output array: 0 4 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14
D

o
u

b
le

 b
u

ffe
rs

Sorted ray ID array:

© 2016 Intel Corporation

SIMD stream shading example

20

Input array:

Output array: 0 4 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14
D

o
u

b
le

 b
u

ffe
rs

Sorted ray ID array:

© 2016 Intel Corporation

SIMD stream shading example

21

Input array:

SIMD register:

Output array: 0 4 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14
D

o
u

b
le

 b
u

ffe
rs

Sorted ray ID array:

© 2016 Intel Corporation

SIMD stream shading example

22

Input array:

SIMD register:

Output array: 0 4 11

1 2 6 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14
D

o
u

b
le

 b
u

ffe
rs

Sorted ray ID array:

Gather

© 2016 Intel Corporation

SIMD stream shading example

23

Input array:

SIMD register:

Output array:

SIMD register:

0 4 11

1 2 9

1 2 6 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14

Shading

Gather

D
o

u
b

le
 b

u
ffe

rs
Sorted ray ID array:

© 2016 Intel Corporation

SIMD stream shading example

24

Input array:

SIMD register:

Output array:

SIMD register:

0 4 11 1 2 9

1 2 9

1 2 6 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 1 2 6 9 15 5 10 12 13 3 7 8 14

Pack-store

Shading

Gather

D
o

u
b

le
 b

u
ffe

rs
Sorted ray ID array:

© 2016 Intel Corporation

Results

25

 Stream tracing (Our)

 Stream size: 2K rays (376 KB/thread)

 Single-ray tracing w/ scalar shading

 Packet tracing w/ SIMD shading

 Same SIMD single-ray traversal kernel

 8-wide SIMD, AVX2 instruction set

 Hardware: dual-socket Xeon E5-2699 v3

 36 cores, 72 threads, 90 MB LLC (30% used for streams)

© 2016 Intel Corporation

Test scenes

26

Art Deco / 111 materials Mazda / 76 materials Villa / 97 materials

Conference / 36 materials
complex procedural shaders

Dragon / 5 materials
simple shaders

© 2016 Intel Corporation

Path tracing performance (Mray/s)

27

0

20

40

60

80

100

120

Art Deco Mazda Villa Conference Dragon

M
ra

y
/s

Single

Packet

Our

© 2016 Intel Corporation

Path tracing performance (Mray/s)

28

0

20

40

60

80

100

120

Art Deco Mazda Villa Conference Dragon

M
ra

y
/s

Single

Packet

Our

3× speedup

© 2016 Intel Corporation

SIMD utilization for shading (%)

29

0

10

20

30

40

50

60

70

80

90

100

Art Deco Mazda Villa Conference Dragon

S
IM

D
 u

ti
li

za
ti

o
n

 (%
)

Single

Packet

Our

© 2016 Intel Corporation

Rendering time breakdown

30

0

10

20

30

40

50

60

70

80

90

100

Packet Our Packet Our Packet Our Packet Our Packet Our

Art Deco Mazda Villa Conference Dragon

N
o

rm
a

li
ze

d
 t

im
e

Unaccounted

Sorting

Shading

Traversal

© 2016 Intel Corporation

0

10

20

30

40

50

60

70

80

90

100

8 32 128 512 2048 8192 32768

S
IM

D
 u

ti
li

za
ti

o
n

 (%
)

Stream size

Art Deco

Mazda

Villa

Conference

Dragon

SIMD utilization vs. stream size

31

© 2016 Intel Corporation

Conclusion

32

 Achieves much higher SIMD utilization than single-ray and packet shading

 Reduces shading time by 2-3× for complex scenes with hundreds of shaders

 Could perform even better with production-quality shaders

 Scales well to hundreds of CPU cores, wider SIMD (16), and bigger caches

 Future work:

 Additional sorting steps (e.g., textures)

 Bidirectional path tracing

© 2016 Intel Corporation

Questions?

33

© 2016 Intel Corporation

SIMD utilization vs. number of materials

35

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256 512 1024

S
IM

D
 u

ti
li

za
ti

o
n

 (%
)

Number of materials

Packet

Stream 2K

Stream 8K

Stream 32K

