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Path tracing 

 Standard method for production rendering 

 Main steps: 

 Ray traversal 

 Shading 

 Usually more than half 
of the rendering time 

3 
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Path tracing 
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 Single-ray tracing 

 SIMD single-ray traversal 

 Scalar shading 

 

 Packet tracing 

 SIMD single-ray traversal (or packet traversal) 

 SoA-based SIMD packet shading 
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Path tracing 

 Random rays  incoherent traversal and shading  

 Low utilization of vector units 

 The wide (8-32) vector units of modern CPUs and GPUs are wasted 

 Incoherent memory accesses 
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Incoherent shading 
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 SIMD divergence 

 Many different shaders are evaluated within a SIMD batch 

 Low SIMD utilization 

 

 

 

 

 Incoherent texture access 

 Non-cached reads form memory, disk, or network 
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Coherence extraction 
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 Performance can be improved by extracting coherence 

 Find batches of similar rays and process them together 

 Most previous research focused on traversal 

 

 Stream shading 

 Trace streams of rays and sort them on various criteria (e.g., material) 

 Previous methods operate on a single large, global stream (millions of rays): 

 Wavefront path tracing on GPUs [Laine et al. 2013] 

 Sorted deferred shading for production path tracing [Eisenacher et al. 2013] 
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Our algorithm 
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 Traces and sorts small local streams independently on each CPU thread 

 2K-8K rays per stream 

 Enables efficient SIMD shading with low overhead 

 

 Why local? 

 Has much lower overhead than global! 

 Cache-friendly: the streams fit into the CPU’s last-level cache (LLC) 

 Avoids expensive cross-core communication 

 Very fast (and simple) ray sorting 

 Sufficient for high (> 90%) SIMD utilization 
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Path tracing integrator 
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 Unidirectional path tracer with next event estimation 

 

 Cast a ray from the camera 

 Evaluate the material at the hit point 

 Material ID 

 Material shader which constructs a BSDF 

 Cast a shadow ray toward a light source 

 Cast an extension ray and repeat 
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Stream tracing 
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 Two ray streams: 

 Extension ray stream 

 Shadow ray stream 

 SoA memory layout 

 SIMD-friendly 

 Compact 

 No gaps (inactive rays) 

 

 Algorithm consists of stages 

 Each stage involves a stream iteration 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 
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Stream tracing 
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 Ray generation 

 Generate primary rays from an image tile 

 e.g., 16x16 pixels, 8 samples per pixel 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 
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Stream tracing 
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 Ray generation 

 Generate primary rays from an image tile 

 e.g., 16x16 pixels, 8 samples per pixel 

 

 Ray intersection 

 Intersect all extension rays in the stream 

 Single-ray traversal 

 Stream traversal 

 DRST [Barringer & Akenine-Möller 2014] 

 ORST [Fuetterling et al. 2015] 

 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 
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Stream tracing 
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 Sorting 

 Sort ray IDs by material ID 

 Counting sort  fast! 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 
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Stream tracing 
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 Sorting 

 Sort ray IDs by material ID 

 Counting sort  fast! 
 

 Material evaluation 

 Iterate over the sorted ray IDs 

 Execute shaders for coherent SIMD batches 

 Generate extension and shadow rays 

 Append to new streams using pack-stores 

 Filter out terminated paths 

 Double buffering 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 



© 2016 Intel Corporation 

Stream tracing 
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 Shadow ray intersection 

 Test all shadow rays for occlusion 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 
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Stream tracing 
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 Shadow ray intersection 

 Test all shadow rays for occlusion 

 

 Accumulation 

 For unoccluded shadow rays, add direct light 

 For terminated paths, accumulate to image 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 
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Stream tracing 
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 Shadow ray intersection 

 Test all shadow rays for occlusion 

 

 Accumulation 

 For unoccluded shadow rays, add direct light 

 For terminated paths, accumulate to image 

 

 Path regeneration (optional) 

 Append new primary rays to the stream 

 Replace terminated paths 

Sorting 

Ray generation 

Ray intersection 

Accumulation 

Shadow ray intersection 

Material evaluation 
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SIMD stream shading example 
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Sorted ray ID array: 

Input array: 

Output array: 0 4 11 
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SIMD stream shading example 
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Input array: 

Output array: 0 4 11 
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SIMD stream shading example 

20 

Input array: 

Output array: 0 4 11 
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SIMD stream shading example 
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Input array: 

SIMD register: 

Output array: 0 4 11 
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Sorted ray ID array: 
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SIMD stream shading example 
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Input array: 

SIMD register: 

Output array: 0 4 11 

1 2 6 9 
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Sorted ray ID array: 

Gather 
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SIMD stream shading example 
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Input array: 

SIMD register: 

Output array: 

SIMD register: 

0 4 11 

1 2 9 

1 2 6 9 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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SIMD stream shading example 
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Input array: 

SIMD register: 

Output array: 

SIMD register: 

0 4 11 1 2 9 
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Sorted ray ID array: 
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Results 
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 Stream tracing (Our) 

 Stream size: 2K rays (376 KB/thread) 

 Single-ray tracing w/ scalar shading 

 Packet tracing w/ SIMD shading 

 

 Same SIMD single-ray traversal kernel 

 8-wide SIMD, AVX2 instruction set 

 Hardware: dual-socket Xeon E5-2699 v3 

 36 cores, 72 threads, 90 MB LLC (30% used for streams) 
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Test scenes 
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Art Deco / 111 materials Mazda / 76 materials Villa / 97 materials 

Conference / 36 materials 
complex procedural shaders 

Dragon / 5 materials 
simple shaders 
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Path tracing performance (Mray/s) 
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Path tracing performance (Mray/s) 

28 

0

20

40

60

80

100

120

Art Deco Mazda Villa Conference Dragon

M
ra

y
/s

 

Single

Packet

Our

3× speedup 



© 2016 Intel Corporation 

SIMD utilization for shading (%) 
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Rendering time breakdown 
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Conclusion 
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 Achieves much higher SIMD utilization than single-ray and packet shading 

 Reduces shading time by 2-3× for complex scenes with hundreds of shaders 

 Could perform even better with production-quality shaders 

 Scales well to hundreds of CPU cores, wider SIMD (16), and bigger caches 

 

 Future work: 

 Additional sorting steps (e.g., textures) 

 Bidirectional path tracing 



© 2016 Intel Corporation 

Questions? 
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SIMD utilization vs. number of materials 
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